tính M = (1618/1751+131313/686868):(1648/1751-131313/686868)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
131313/151515+131313/353535+131313/636363+131313/999999=13/15+13/35+13/63+13/99
=52/33=1/19/33
DUYỆT NHÉ
\(\dfrac{2}{3}x-70.\dfrac{10}{11}:\left(\dfrac{131313}{151515}+\dfrac{131313}{353535}+\dfrac{131313}{636363}+\dfrac{131313}{999999}\right)=-5\)
\(\dfrac{2}{3}x-70.\dfrac{10}{11}:\left(\dfrac{13}{15}+\dfrac{13}{35}+\dfrac{13}{63}+\dfrac{13}{99}\right)=-5\)
\(\dfrac{2}{3}x-70.\dfrac{10}{11}:\left(\dfrac{13}{3.5}+\dfrac{13}{5.7}+\dfrac{13}{7.9}+\dfrac{13}{9.11}\right)=-5\)
\(\dfrac{2}{3}x-70.\dfrac{10}{11}:\left[\dfrac{13}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\right)\right]=-5\)
\(\dfrac{2}{3}x-70.\dfrac{10}{11}:\left[\dfrac{13}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)\right]=-5\)
\(\dfrac{2}{3}x-70.\dfrac{10}{11}:\left[\dfrac{13}{2}.\left(\dfrac{1}{3}-\dfrac{1}{11}\right)\right]=-5\)
\(\dfrac{2}{3}x-70.\dfrac{10}{11}:\left[\dfrac{13}{2}.\dfrac{8}{33}\right]=-5\)
\(\dfrac{2}{3}x-\dfrac{700}{11}:\dfrac{52}{33}=-5\)
\(\dfrac{2}{3}x-\dfrac{525}{13}=-5\)
\(\dfrac{2}{3}x=-5+\dfrac{525}{13}=\dfrac{460}{13}\)
\(x\) = \(\dfrac{460}{13}:\dfrac{2}{3}=\dfrac{690}{13}\).
\(=\frac{13\times10101}{15\times10101}+\frac{13\times10101}{35\times10101}+\frac{13\times10101}{63\times10101}+\frac{13\times10101}{99\times10101}\)
\(=\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}=\frac{13}{2}\times\left(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{3}{7\times9}+\frac{2}{9\times11}\right)\)
\(=\frac{13}{2}\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=\frac{13}{2}\times\left(\frac{1}{3}-\frac{1}{11}\right)=\frac{13}{2}\times\frac{8}{33}=\frac{52}{33}\)
\(\frac{13.10101}{15.10101}\)+\(\frac{13.10101}{15.10101}\)+\(\frac{13.10101}{63.10101}\)+ \(\frac{13.10101}{99.10101}\)= \(\frac{13}{15}\) + \(\frac{13}{15}\) + \(\frac{13}{63}\)+ \(\frac{13}{99}\) =\(2\frac{82}{1155}\)
\(\frac{131313}{151515}+\frac{131313}{353535}+\frac{131313}{636363}+\frac{131313}{999999}\)
=\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)
=\(13\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)
=\(13.\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
=\(\frac{13}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
=\(\frac{13}{2}.\left(\frac{1}{3}-\frac{1}{11}\right)\)
= \(\frac{13}{2}.\frac{8}{33}\)
=\(\frac{52}{33}\)