tính tổng đa thức:
\(M=x^3+xy+y^2-x^2y^2-2\)và \(N=x^2y^2+5-y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(P+Q=\left(x^2y+xy^2-5x^2y^2+x^3\right)+\left(3xy^2-x^2y+x^2y^2\right)\)
=\(x^2y+xy^2-5x^2y^2+x^3+3xy^2-x^2y+x^2y^2\)
=\(x^2y-x^2y+xy^2+3xy^2-5x^2y^2+x^2y^2+x^3\)
=\(4xy^2-4x^2y^2+x^3\)
b)\(M+N=\left(x^3+xy+y^2-x^2y^2-2\right)+\left(x^2y^2+5-y^2\right)\)
=\(x^3+xy+y^2-x^2y^2-2+x^2y^2+5-y^2\)
=\(x^3+xy+y^2-y^2-x^2y^2+x^2y^2-2+5\)
=\(x^3+xy+3\)
Bài dài nên chắc sẽ có sai sót, nếu đúng bạn nha
a) Ta có: P = x2y + xy2 – 5x2y2 + x3 và Q = 3xy2 – x2y + x2y2
=> P + Q = x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2
= x3 – 5x2y2 + x2y2 + x2y – x2y + xy2 + 3xy2
= x3 – 4x2y2 + 4xy2
b) Ta có: M = x3 + xy + y2 – x2y2 – 2 và N = x2y2 + 5 – y2.
=> M + N = x3 + xy + y2 – x2y2 – 2 + x2y2 + 5 – y2
= x3 – x2y2 + x2y2 + y2 – y2 + xy - 2 + 5
= x3 + xy + 3.
a)
P + Q = x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2
= x3 – 5x2y2 + x2y2 + x2y – x2y + xy2 + 3xy2
= x3 – 4x2y2 + 4xy2
b)
M + N = x3 + xy + y2 – x2y2 – 2 + x2y2 + 5 – y2
= x3 – x2y2 + x2y2 + y2 – y2 + xy - 2 + 5
= x3 + xy + 3.
a) Ta có: \(M=x^2y+xy^2-5x^2y^2+x^3-2x^2y+6xy^2\)
\(=\left(x^2y-2x^2y\right)+\left(xy^2+6xy^2\right)-5x^2y^2+x^3\)
\(=x^3-x^2y+7xy^2-5x^2y^2\)
Bậc là 4
Ta có: \(N=3x^3+xy+y^2-x^2y^2-2-2xy+7y^2\)
\(=3x^3+\left(xy-2xy\right)+\left(y^2+7y^2\right)-x^2y^2-2\)
\(=3x^2+8y^2-xy-x^2y^2-2\)
Bậc là 4
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
a: Ta có: M+N
\(=-xy^2+3x^2y-x^2y^2+\dfrac{1}{2}x^2y-xy^2+\dfrac{-2}{3}x^2y^2\)
\(=-2xy^2+\dfrac{7}{2}x^2y-\dfrac{5}{3}x^2y^2\)
b: Ta có: N-Q=M
nên \(Q=N-M\)
\(=\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2+xy^2-3x^2y+x^2y^2\)
\(=\dfrac{-5}{2}x^2y+\dfrac{1}{3}x^2y^2\)
a) \(M+N=-xy^2+3x^2y-x^2y^2+\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2=\dfrac{7}{2}x^2y-2xy^2-\dfrac{5}{3}x^2y^2\)b) \(N-Q=M\Rightarrow Q=N-M=\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2+xy^2-3x^2y+x^2y^2=-\dfrac{5}{2}x^2y+\dfrac{1}{3}x^2y^2\)c) \(Q=-\dfrac{5}{2}x^2y+\dfrac{1}{3}x^2y^2=-\dfrac{5}{2}.\left(-1\right)^2.\dfrac{1}{2}+\dfrac{1}{3}.\left(-1\right)^2.\left(\dfrac{1}{2}\right)^2=-\dfrac{7}{6}\)
a ) A = M + N = ( 2x2y - xy2 + 3x - 2y ) + ( 2xy2 - 2x2y - 5x + 2y )
= 2x2y - xy2 + 3x - 2y + 2xy2 - 2x2y - 5x + 2y
= ( 2x2y - 2x2y ) + ( -xy2 + 2xy2 ) + ( 3x - 5x ) + ( - 2y + 2y )
= 0 + ( -1 +2 ) xy2 + ( 3 - 5 )x + 0
= xy2 - 2x
Vậy A = M + N = xy2 - 2x
B = N - M = 2xy2 - 2x2y - 5x + 2y - ( 2x2y - xy2 + 3x - 2y )
= 2xy2 - 2x2y - 5x + 2y - 2x2y + xy2 - 3x + 2y
= ( 2xy2 + xy2 ) + ( -2x2y - 2x2y ) + ( - 5x - 3x ) + ( 2y + 2y )
= ( 2 + 1 )xy2 + ( -2 - 2 )x2y + ( - 5 - 3 )x + ( 2 + 2 )y
= 3xy2 - 4x2y - 8x + 4y
Vậy B = 3xy2 - 4x2y - 8x + 4y
a) P + Q = (x² + 2x³ - xy² + 5) + (x³ + xy² - 2x²y - 6)
= x² + 2x³ - xy² + 5 + x³ + xy² - 2x²y - 6
= (2x³ + x³) + x² + (-xy² + xy²) - 2x²y + (5 - 6)
= 3x³ + x² - 2x²y - 1
b) Q = P + N
N = Q - P
= (x³ + xy² - 2x²y - 6) - (x² + 2x³ - xy² + 5)
= x³ + xy² - 2x²y - 6 - x² - 2x³ + xy² - 5
= (x³ - 2x³) + (xy² + xy²) - 2x²y - x² + (-6 - 5)
= -x³ + 2xy² - 2x²y - x² - 11
Vậy N = -x³ + 2xy² - 2x²y - x² - 11
Tính tổng hai đa thức P và Q rồi tìm bậc của đa thức tổng
\(B=\dfrac{3}{4}xy^2-\dfrac{1}{3}x^2y-\dfrac{5}{6}xy^2+2x^2y=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y\)
Bậc:3
Thay x=-1, y=1 vào B ta có:
\(B=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y=-\dfrac{1}{12}.\left(-1\right).1^2+\dfrac{5}{3}.\left(-1\right)^2.1=\dfrac{1}{12}+\dfrac{5}{3}=\dfrac{7}{4}\)
2:
a: A(x)=0
=>5x-10-2x-6=0
=>3x-16=0
=>x=16/3
b: B(x)=0
=>5x^2-125=0
=>x^2-25=0
=>x=5 hoặc x=-5
c: C(x)=0
=>2x^2-x-3=0
=>2x^2-3x+2x-3=0
=>(2x-3)(x+1)=0
=>x=3/2 hoặc x=-1
M+N=(x3+xy+y2-x2y2-2)+(x2y2+5-y2)
=x3+xy+y2-x2y2+x2y2+5-y2
=tự lm tiếp
\(x^3+xy+3\)