Cho hình chữ nhật ABCD có AB = 2 BC. K, Q lần lượt là trung điểm của AB và CD.
a/ Tứ giác AKCQ là hình gì ? Vì sao ?
b/ Biết BC = 3 cm. Tính diện tích của tam giác ABQ.
c/ KD cắt AQ tại I, KC cắt BQ tại J. Tứ giác IKJQ là hình gì? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔBAD có
E là trung điểm của AB
EI//AD
Do đó: I là trung điểm của BD
a: Xét tứ giác APQD có
AP//QD
AP=QD
Do đó: APQD là hình bình hành
mà AP=AD
nên APQD là hình thoi
b: Xét tứ giác PBQD có
PB//QD
PB=QD
Do đó: PBQD là hình bình hành
Suy ra: PD//QB và PD=QB(1)
Xét tứ giác BPQC có
BP//QC
BP=QC
Do đó: BPQC là hình bình hành
mà BP=BC
nên BPQC là hình thoi
=>PC và QB cắt nhau tại trung điểm của mỗi đường
hay K là trung điểm của BQ
=>KQ=BQ/2(2)
Ta có: APQD là hình thoi
nên AQ và PD vuông góc với nhau tại trung điểm của mỗi đường
=>I là trung điểm của PD
=>IP=PD/2(3)
Từ (1), (2) và (3) suy ra IP//QK và IP=QK
hay IPKQ là hình bình hành
mà \(\widehat{PIQ}=90^0\)
nên IPKQ là hình chữ nhật
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
a: Xét tứ giác AKCQ có
AK//CQ
AK=CQ
Do đó: AKCQ là hình bình hành