K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

a: Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

mà AD là tia phân giác

nên AEDF là hình thoi

26 tháng 12 2021

a: Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

mà AD là tia phân giác

nên AEDF là hình thoi

22 tháng 11 2019

k đúng cho tôi đi

22 tháng 11 2019

( Bạn tự vẽ hình nha )

a) Xét tứ giác AEDF có :

DE // AB

DF // AC

=> AEDF là hình bình hành ( dấu hiệu nhận biết )

Xét hình bình hành AEDF có : 

AD là phân giác của góc BAC

=> EFGD là hình thoi ( dấu hiệu nhận biết )

b) XÉt tứ giác EFGD có :

FG // ED ( AF //ED )

FG = ED ( AF = ED )

=> EFGD là hình bình hành ( dấu hiệu nhận biết )

c) Nối G với I 

+) XÉt tứ giác AIGD có :

F là trung điểm của AG

F là trung điểm của ID

=> AIGD là hình bình hành ( dấu hiệu nhận biết ) 

=> GD // IA hay GD // AK ( tính chất  )

+) Xét tứ giác AKDG có :

GD // AK 

AG // Dk ( AF // ED ) 

=> AKDG là hình bình hành ( dấu hiệu )

+) xtes hinhnf bình hành AKDG có :

AD và GK là 2 đường chéo 

=> AD và GK cắt nhau tại trung điểm mỗi đường 

Mà O là trung điểm của AD ( vì AFDE là hình thoi )

=> O là trung điểm của GK

=> ĐPCM

12 tháng 11 2021

a: Xét tứ giác AEDF có 

AE//DF

DE//FA

Do đó: AEDF là hình bình hành

mà \(\widehat{A}=90^0\)

nên AEDF là hình chữ nhật

13 tháng 11 2021

phần b đâu bạn

16 tháng 12 2023

MMỉm đang cần rất gấp  giúp mỉm với

 

16 tháng 12 2023

loading...  a) Do MN // AB (gt)

⇒ MN // AE

Do ME // AC (gt)

⇒ ME // AN

Do AM là tia phân giác của ∠BAC (gt)

⇒ AM là tia phân giác của ∠EAN

Xét tứ giác AEMN có:

MN // AE (cmt)

ME // AN (cmt)

⇒ AEMN là hình bình hành

Mà AM là tia phân giác của ∠EAN (cmt)

⇒ AEMN là hình thoi

b) Do D là điểm đối xứng của M qua N (gt)

⇒ N là trung điểm của DM

∆ABC cân tại A có AM là tia phân giác của ∠BAC (gt)

⇒ AM cũng là đường trung trực của ∆ABC

⇒ M là trung điểm của BC

∆ABC có:

M là trung điểm của BC (cmt)

MN // AB (gt)

⇒ N là trung điểm của AC

Tứ giác ADCM có:

N là trung điểm của DM (cmt)

N là trung điểm của AC (cmt)

⇒ ADCM là hình bình hành

⇒ AD // CM

⇒ AD // BM

Do MN // AB (gt)

⇒ MD // AB

Tứ giác ADMB có:

MD // AB (cmt)

AD // BM (cmt)

⇒ ADMB là hình bình hành

a: Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

Hình bình hành AEDF có AD là phân giác của góc FAE

nên AEDF là hình thoi

b: Xét ΔABC có AD là phân giác

nên \(\dfrac{CD}{DB}=\dfrac{AC}{AB}\left(1\right)\)

Xét ΔABC có DE//AB

nên \(\dfrac{CD}{DB}=\dfrac{CE}{EA}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AC}{AB}=\dfrac{EC}{EA}\)

=>\(AC\cdot AE=AB\cdot EC\)

a: Xét tứ giác AEDF có 

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

mà AD là phân giác

nên AEDF là hình thoi

mà \(\widehat{EAF}=90^0\)

nên AEDF là hình vuông

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{5}{7}\)

Do đó: DB=15/7(cm); DC=20/7(cm)

9 tháng 4 2022

Vẽ hình(tự vẽ nha)

a) Ta có: \(BC^2\)=\(5^2=25\)

\(AB^2+AC^2=3^2+4^2=9+16=25\)

\(AB^2+AC^2=BC^2\)

⇒Δ ABC vuông tại A (theo định lí Py-ta -go đảo)

⇒BA⊥AC

Mà DE//AC(gt);DF//AB(gt)

⇒DE⊥BA;DF⊥AC(t/c)

Xét tứ giác AEDF có   \(\widehat{AFD}=90^o\left(DF\perp AC\right)\)\(\widehat{BAC}=90^o\left(BA\perp AC\right);\widehat{AED}=90^{o^{ }}\left(DE\perp BA\right)\);AD là p/g \(\widehat{BAC}\)

⇒Tứ giác AEDF là hình vuông (d/h)

b) Xét ΔABC có AD là tia phân giác \(\widehat{BAC}\),theo t/c ta có:

\(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)\(\dfrac{DC}{AC}=\dfrac{BD}{AB}\)hay\(\dfrac{DC}{4}=\dfrac{BD}{3}\) 

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\dfrac{DC}{4}=\dfrac{BD}{3}\)=\(\dfrac{DC+BD}{4+3}=\dfrac{BC}{7}=\dfrac{5}{7}\)

\(\left\{{}\begin{matrix}DC=4.\dfrac{5}{7}=\dfrac{20}{7}\left(cm\right)\\BD=BC-DC=5-\dfrac{20}{7}=\dfrac{15}{7}\left(cm\right)\end{matrix}\right.\)

Bạn xem lại có phải chép sai đề không?,ở chỗ "tứ giác aebf là hình gì" và chỗ "af/ab+af/ab=1",và câu d có gì đó thiếu thiếu.Mk đã sửa lại câu a,vì như vậy mới ra tứ giác.

 

 

 

 

a: Xét tứ giác AEDF có

AE//DF

AF//DE

AD là phân giác của góc FAE

Do đó: AEDF là hình thoi

b: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

góc MAD=góc NAD

Do đó; ΔAMD=ΔAND

=>AM=AN

Xét ΔAEF có AM/AF=AN/AE

nên MN//EF

a) Xét tứ giác AEDF có 

FD//AE(gt)

ED//AF(gt)

Do đó: AEDF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AEDF có AD là tia phân giác của \(\widehat{FAE}\)(gt)

nên AEDF là hình thoi(Dấu hiệu nhận biết hình thoi)

23 tháng 11 2021

THAM KHẢO:

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

d) Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

23 tháng 11 2021

cảm ơn bạn nha