từ 1234...2000 CMR ko là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20 số nguyên liên tiếp có 6 số chia hết cho 3 →→ tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1 →→ tổng 20 số chính phương liên tiếp chia 3 dư 2
Bấm mình nha...
Khải Nhi à, bạn đếm sai rồi, thế còn dãy 20 số từ 0 đến 19 hay các dãy đại loại thế phải có 7 số mới đúng
Cho tam giác ABC vẽ AH vuông góc BC taih H . Lấy D,E sao cho D ddpos xứng với H,E đối xứng vs H qua AC . Gọi giao điểm của DE vs AB và AC lần lượt là M,N
a, C/m tam giác AMD=tam giác AMH
b, C/m AD=AE
c, C/m AH là p/giác góc MHN
Vẽ giúp mk hình vs đc k ạ
Tổng 20 số chính phương liên tiếp có dạng:
\(A=n^2+\left(n+1\right)^2+\left(n+2\right)^2+...+\left(n+19\right)^2.\)
\(A=20n^2+2\cdot\left(1+2+3+...+19\right)n+1^2+2^2+3^3+...+19^2.\)
\(A=20n^2+2\cdot\frac{19\cdot20}{2}n+\frac{19\cdot\left(19+1\right)\left(2\cdot19+1\right)}{6}\)
\(A=20n^2+19\cdot20\cdot n+19\cdot13\cdot10\)
Dễ thấy A chia hết cho 2 nhưng không chia hết cho 4 nên A không phải là số chính phương.
Số lượng các ước của A là 81, là một số lẻ, nên A là số chính phương (1). Mặc khác, tổng các chữ số của A bằng 51 nên A chia hêt cho 3 nhưng không chia hêt cho 9, do đó A không là số chính phương (2), mâu thuẫn với (1). Vậy A không thể có 81 ước
20 số nguyên liên tiếp có 6 số chia hết cho 3
→ tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1
→ tổng 20 số chính phương liên tiếp chia 3 dư 2