K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2016

2/1.3+2/3.5+2/5.7+...+2/101.103=1/1-1/3+1/3-1/5+1/5-1/7+...+1/101-1/103

=1-1/103=102/103

k cho mình nhé chắc chắn đúng

7 tháng 2 2017

B=22(\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+...+\(\frac{2}{101.103}\))

B=4[1/3-1/5+1/5-1/7+1/7-1/9 +...+1/101-1/103]

B=4[1/3-1/103]

B=4.(100/309)

B=400/309

7 tháng 2 2017

MOI NGUOI NHO K VA KET BAN VOI MINH NHE

25 tháng 10 2015

Đặt A = \(\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{205^2}\)

=> A < \(\frac{1}{100.101}+\frac{1}{101.102}+....+\frac{1}{204.205}\)

=> A < \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{204}-\frac{1}{205}\)

=> A < \(\frac{1}{100}-\frac{1}{205}\)

=> A < \(\frac{1}{2100}\)

Đặt B = \(\frac{1}{2^2.3.5^2.7}=\frac{1}{2100}\)

=> A < B

=> \(\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{205^2}

25 tháng 10 2015

giỏi lắm mình cũng biết làm chỉ hỏi chơi thôi 

ủng hộ

7 tháng 5 2018

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)

\(=1-\frac{1}{11}\)

\(=\frac{11}{11}-\frac{1}{11}\)

\(=\frac{10}{11}\)

Chúc bạn học tốt !!! 

7 tháng 5 2018

10/11 là   đúng 

28 tháng 6 2016

\(E=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)

\(E=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

\(E=\frac{1}{1}-\frac{1}{99}\)

\(E=\frac{98}{99}\)

28 tháng 6 2016

E= \(\frac{2}{1.3}.\frac{2}{3.5}+...+\frac{2}{97.99}\)
E = 1 - \(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
E = 1 - 1/99
E = 98 / 99
Chúc bạn học tốt 

25 tháng 4 2016

\(\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+...+\frac{1}{99.101.103}\)

=\(\frac{1}{4}\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{99.101.103}\right)\)

=\(\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{99.101}-\frac{1}{101.103}\right)\)

=\(\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{101.103}\right)\)

=\(\frac{1}{4}.\frac{10406}{31209}\)

=\(\frac{5230}{62418}\)

25 tháng 4 2016

tui chịu thôi

29 tháng 2 2016

\(\frac{16}{11},-\frac{5}{9},\frac{10}{539}\)

bài 1

Ta có : 2016/2017<1

            2017/2018<1

Nên 2016/2017=2017/2018

4 tháng 5 2018

Bài 1 :

a) Ta có : \(\frac{2016}{2017}=1-\frac{1}{2017}\)

                \(\frac{2017}{2018}=1-\frac{1}{2018}\)

Vì \(-\frac{1}{2017}< -\frac{1}{2018}\)nên \(\frac{2016}{2017}< \frac{2017}{2018}\)

b) Ta có : \(\frac{2018}{2017}=1+\frac{1}{2017}\)

                 \(\frac{2017}{2016}=1+\frac{1}{2016}\)

Vì \(\frac{1}{2017}< \frac{1}{2016}\) nên \(\frac{2018}{2017}< \frac{2017}{2016}\)

Câu 2 : 

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{101.103}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{101.103}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{103}\right)\)

\(=\frac{1}{2}.\frac{102}{103}=\frac{51}{103}\)

30 tháng 4 2018

\(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}\)

\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(A=2.\left(1-\frac{1}{7}\right)\)

\(A=2.\frac{6}{7}\)

\(A=\frac{12}{7}\)

30 tháng 4 2018

\(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}\)

\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)

\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\right)\)

\(A=2.\left(1-\frac{1}{7}\right)\)

\(A=2.\left(\frac{7}{7}-\frac{1}{7}\right)\)

\(A=2.\frac{6}{7}\)

\(A=\frac{12}{7}\)

Chúc bạn học tốt !!!