Cho đường tròn (O;r) và điểm M nằm ngoài đường tròn, biết khoảng cách từ M đến O là d. Kẻ cát tuyến MAB với đường tròn. Gọi C là điểm đối xứng với A qua M. D là trung điểm của đoạn BC. Hãy so sánh BD với \(\left(d-r\right)\left(d+r\right)\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Xin lỗi các bạn. Đề bài đúng phải là so sánh BD với \(\sqrt{\left(d-r\right)\left(d+r\right)}\)
Gọi E là trung điểm AB \(\Rightarrow OE\perp AB\)
Do D là trung điểm BC \(\Rightarrow BD=\dfrac{1}{2}BC\) (1)
Do C đối xứng A qua M \(\Rightarrow AM=\dfrac{1}{2}AC\)
Do E là trung điểm AB \(\Rightarrow AE=\dfrac{1}{2}AB\)
\(\Rightarrow AM+AE=\dfrac{1}{2}AC+\dfrac{1}{2}AB\Rightarrow ME=\dfrac{1}{2}BC\) (2)
(1);(2) \(\Rightarrow BD=ME\)
Trong tam giác vuông OAE, do OA là cạnh huyền và OE là cạnh góc vuông \(\Rightarrow OE< OA\Rightarrow OE< r\)
Áp dụng định lý Pitago:
\(ME^2=OM^2-OE^2=d^2-OE^2>d^2-r^2\)
\(\Rightarrow BD^2>d^2-r^2\Rightarrow BD>\sqrt{\left(d-r\right)\left(d+r\right)}\)