K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

Do đó: ADME là hình chữ nhật

11 tháng 11 2021

b: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)

Do đó: ADME là hình chữ nhật

26 tháng 12 2021

a: Xét tứ giác AKIH có 

\(\widehat{AKI}=\widehat{AHI}=\widehat{HAK}=90^0\)

Do đó: AKIH là hình chữ nhật

27 tháng 10 2021

a: Xét ΔABC có

D là trung điểm của BC

E là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//AB

Xét tứ giác ABDE có DE//AB

nên ABDE là hình thang

mà \(\widehat{EAB}=90^0\)

nên ABDE là hình thang vuông

27 tháng 10 2021

em cần nhất là câu c ấy ạ bucminh

16 tháng 11 2018

B D V N M K E C

a) Xét tứ giác ADME có :

Góc A = 90( tam giác ABC vuông tại A )

Góc D = 900 ( MD vuông góc AB )

Góc E = 900 ( ME vuông góc AC )

Do đó tứ giác ADME là hình chữ nhật

b) Chứng minh đúng D, E là trung điểm của AB ; AC

Chứng minh đúng DE là đường trung bình của tam giác 

ABC nên DE song song và \(DE=\frac{BC}{2}\)

Cho nên DE song song với BM và DE = BM

=> Tứ giác BDME là hình bình hành

c) Xét tứ giác AMCF có :

E là trung điểm MF ( vì M đối xứng với F qua E )

Mà E là trung điểm của AC ( cmt )

Nên tứ giác AMCF là hình bình hành 

Ta có AC vuông góc MF ( vì ME vuông góc AC )

Do đó tứ giác AMCF là hình thoi

d) Chứng minh đúng tứ giác ABNE là hình chữ nhật

Gọi O là giao điểm hai đường chéo AN và BE của hình chữ nhật ABNE

trong tam giác vuông BKE có KO là trung tuyến ứng với cạnh huyền BE

nên \(KO=\frac{BE}{2}\)

mà BE = AN ( đường chéo hình chữ nhật ) nên \(KO=\frac{AN}{2}\)

trong tam giác AKN có trung tuyến KO bằng nửa cạnh AN

nên tam giác AKN vuông tại A 

Vậy AK vuông góc KN

5 tháng 12 2018

$\in $

a: Xét ΔABC có 

M là trung điểm của BC

E là trung điểm của AC

Do đó: ME là đường trung bình của ΔABC

Suy ra: ME//AB

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Lời giải:
a. $M,E$ là trung điểm $BC, AC$

$\Rightarrow ME$ là đường trung bình của $ABC$ ứng với $AB$

$\Rightarrow ME\parallel AB$

Mà $AB\perp AC$ nên $ME\perp AC$

$\Rightarrow \widehat{E}=90^0$

Tứ giác $ADME$ có 3 góc vuông $\widehat{A}=\widehat{D}=\widehat{E}=90^0$ nên là hcn.

b.

Tứ giác $AMKC$ có 2 đường chéo $AC, MK$ cắt nhau tại trung điểm $E$ của mỗi đường nên là hình bình hành.

Mà $MK\perp AC$ (do $ME\perp AC$) 

$\Rightarrow AMKC$ là hình thoi.

c.

Gọi I là giao $DE, HM$

$DM\perp AB, AB\perp AC\Rightarrow DM\parallel AC$

$\Rightarrow \frac{DB}{AD}=\frac{BM}{MC}=1$ (định lý Talet)

$\Rightarrow DB=AD$ hay $D$ là trung điểm $AB$

$ME$ là đường trung bình ứng với cạnh AB

$\Rightarrow ME\parallel AB$ và $ME=\frac{1}{2}AB$

Mà $E$ là trung điểm của $MK$

$\Rightarrow EK\parallel AB$ và $EK=AB:2$

$\Rightarrow EK\parallel DA$ và $EK=DA$

$\Rightarrow DEKA$ là hbh

$\Rightarrow DE\parallel AK$

Mà $HM\perp AK$ nên $DE\perp HM(*)$

Lại có:

$DE\parallel AK \Rightarrow IE\parallel HK$

$\Rightarrow \frac{MI}{IH}=\frac{ME}{EK}=1$

$\Rightarrow MI=IH(**)$

Từ $(*); (**)$ suy ra $DE\perp HM$ tại trung điểm $I$ của $HM$

$\Rightarrow DE$ là đường trung trực của $HM$

$\Rightarrow DH=DM, EH=EM$

$\Rightarrow \triangle DHE=\triangle DME$ (c.c.c)

$\Rightarrow \widehat{DHE}=\widehat{DME}=90^0$

$\Rightarrow DH\perp HE$

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

b: Xét tứ giác AMBP có

D là trung điểm chung của AB và MP

MA=MB

Do đó: AMBP là hình thoi

=>ABlà phân giác của góc MAP(1)

c: Xét tứ giác AMCQ có

E là trung điểm chung của AC và MQ

MA=MC

Do đó: AMCQ là hình thoi

=>AC là phân giác của góc MAQ(2)

Từ (1), (2) suy ra góc PAQ=2*90=180 độ

=>P,A,Q thẳng hàng

mà AP=AQ

nên A là trung điểm của PQ