3x-x bằng bn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia2 vế cho \(cos^3x\)
\(4tan^3x-\frac{tanx}{cos^2x}-\frac{1}{cos^2x}=0\)
\(\Leftrightarrow4tan^3x-tanx\left(1+tan^2x\right)-\left(1+tan^2x\right)=0\)
\(\Leftrightarrow3tan^3x-tan^2x-tanx-1=0\)
\(\Leftrightarrow\left(tanx-1\right)\left(3tan^2x+2tanx+1\right)=0\)
\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\)
Hai nghiệm âm lớn nhất là \(x=\left\{-\frac{3\pi}{4};-\frac{7\pi}{4}\right\}\) có tổng là \(-\frac{5\pi}{2}\)
|3x-1|+4=9
|3x-1| =9-4
|3x-1| =5
\(\Rightarrow\)3x-1=5; 3x-1=-5
\(\Rightarrow\)3x=5+1; 3x=-5+1
\(\Rightarrow\)3x=6; 3x=-4
\(\Rightarrow\)x=
\(=\)\(66x^3-22x-4x^3+16x^2-4x^2+2x-6x^2\) \(=62x^3-20x+6x^2\)
\(=x^2-2.\frac{5}{2}x+\frac{25}{4}+\frac{23}{4}\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{23}{4}\)
`(x-3/4)(4+3x)+0`
`<=>` \(\left[ \begin{array}{l}x-\dfrac34=0\\3x+4=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=\dfrac34\\3x=-4\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=\dfrac34\\x=-\dfrac43\end{array} \right.\)
Vậy `x=3/4` hoặc `x=-4/3`
Ta có: \(\left(x-\dfrac{3}{4}\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Câu 1)
\(\sqrt{2x^2+x+9}+\sqrt{2x^2-x+1}=x+4\)
ĐKXĐ:.......
Đặt \(\left\{\begin{matrix} \sqrt{2x^2+x+9}=a\\ \sqrt{2x^2-x+1}=b\end{matrix}\right.(a,b\geq 0)\)
\(\Rightarrow \left\{\begin{matrix} 2x^2+x+9=a^2\\ 2x^2-x+1=b^2\end{matrix}\right.\) \(\Rightarrow a^2-b^2=2x+8\)
Như vậy, pt tương đương:
\(a+b=\frac{a^2-b^2}{2}\)
\(\Leftrightarrow (a+b)\left(1-\frac{a-b}{2}\right)=0(1)\)
Thấy rằng : \(a=\sqrt{2(x+\frac{1}{4})^2+\frac{71}{8}}>0\);
\(b=\sqrt{2x^2-x+1}=\sqrt{2(x-\frac{1}{4})^2+\frac{7}{8}}>0\)
Do đó: \(a+b>0(2)\)
Từ \((1); (2)\Rightarrow 1-\frac{a-b}{2}=0\)
\(\Leftrightarrow a-b=2\)
\(\Rightarrow \sqrt{2x^2+x+9}=\sqrt{2x^2-x+1}+2\)
\(\Rightarrow 2x^2+x+9=2x^2-x+1+4+4\sqrt{2x^2-x+1}\) (bình phương)
\(\Rightarrow x+2=2\sqrt{2x^2-x+1}\)
\(\Rightarrow x^2+4x+4=4(2x^2-x+1)\)
\(\Rightarrow 7x^2-8x=0\Leftrightarrow x=0\) hoặc \(x=\frac{8}{7}\)
Thử lại thấy thỏa mãn.
Câu 2:
ĐKXĐ:.....
Thực hiện liên hợp.
\(\sqrt{3x^2-5x+1}-\sqrt{3x^2-3x-3}=\sqrt{x^2-2}-\sqrt{x^2-3x+4}\)
\(\Leftrightarrow \frac{3x^2-5x+1-(3x^2-3x-3)}{\sqrt{3x^2-5x+1}+\sqrt{3x^2-3x-3}}=\frac{x^2-2-(x^2-3x+4)}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)
\(\Leftrightarrow \frac{-2x+4}{\sqrt{3x^2-5x+1}+\sqrt{3x^2-3x-3}}=\frac{3x-6}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)
\(\Leftrightarrow (x-2)\left(\frac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}+\frac{2}{\sqrt{3x^2-5x+1}+\sqrt{3x^2-3x-3}}\right)=0\)
Hiển nhiên biểu thức trong ngoặc lớn luôn lớn hơn $0$
Do đó: \(x-2=0\Leftrightarrow x=2\)
Thử lại thấy thỏa mãn.
Vậy \(x=2\)
2x nhé
3x-x=3x-1x=x(3-2)=2x