Bài 1:Tính S= \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
Bài 2: Tính S= 1+3+9+27+...+1438907
Bài 3: Cho \(f\left(1\right)=1;f\left(m+n\right)=f\left(m\right)+f\left(n\right)+mn.\)Tính f(10), f(2015) (Với m, n là các số nguyên dương)
Bài 1
Ta có \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=\sqrt{\left(1+\frac{1}{2}-\frac{1}{3}\right)^2}\)
Tương tự như trên ta được
S = 1+1/2-1/3+1+1/3-1/4+...+1+1/99-1/100
= 98 + 1/2 - 1/100
= 9849/100