Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Tìm cac số nguyên dương x,y biết \(\left(x+y\right)^5\le100x+3\)
Vì x,y \(\in\) N* nên \(\left(x+y\right)^5\le100x+3< 100x+100y=100\left(x+y\right)\)
\(\Rightarrow\left(x+y\right)^4\le100< 4^4\)
=> x + y < 4
Mà \(x+y\ge2\) (vì x,y \(\in\) N*)
\(\Rightarrow\orbr{\begin{cases}x+y=2\\x+y=3\end{cases}}\)
+) x + y = 2 => x = y = 1 (thỏa mãn)
+) x + y = 3 => \(\orbr{\begin{cases}x=1,y=2\left(tm\right)\\x=2,y=1\left(ktm\right)\end{cases}}\)
Vậy x=1,y=1 hoặc x=1,y=2
1.-100<x<=100
nên xE{-99-;-98;...;99;100}
=>Tổng các số nguyên x là: -99+(-98)+...+99+100=(-99+99)+(-98+98)+...+(-1+1)+100=0+0+...+0+100=100
2.Số nguyên âm lớn nhất là: -1
nên x+2009=-1
x=-1-2009
x=-2010
3.(x-3)(x+4)=0
=>x-3=0 hoặc x+4=0
x=0+3 x=0-4
x=3 x=-4
\(30\left(x+2\right)-6\left(x-5\right)-24x=100\)
\(\Leftrightarrow30x+60-6x+30-24x=100\)
\(\Leftrightarrow0x=10\)( vô lý )
Vậy \(x\in\varnothing\)
a. \(-3x=36\)
\(x=\dfrac{36}{-3}=-12\)
Vậy....
b. \(-100:\left(x+5\right)=-5\)
\(x+5=-100:\left(-5\right)\)
\(x+5=20\)
\(x=20-5=15\)
Vậy....
a) (-3)x=36
nên x=-12
Vậy: x=-12
b) (-100):(x+5)=-5
\(\Leftrightarrow x+5=20\)
hay x=15
Vậy: x=15
Bài 3:
a: \(x\in\left\{-5;-4;-3;-2;-1\right\}\)
b: \(x\in\left\{-3;-2;-1;0;1;2;3;4;5;6\right\}\)
a/
$(x+1)+(x+2)+...+(x+100)=5750$
$(x+x+....+x)+(1+2+....+100)=5750$
Số lần xuất hiện của $x$:
$(100-1):1+1=100$
Suy ra:
$100x+(1+2+3+....+100)=5750$
$100x+100.101:2=5750$
$100x+5050=5750$
$100x=700$
$x=700:100$
$x=7$
b/
$x^2y-x+xy=6$
$x(xy-1+y)=6$
Do $x,y$ nguyên nên $xy-1+y$ cũng là số nguyên. Mà tích $x(xy-1+y)=6$ nên ta có các TH sau:
TH1: $x=1, xy-1+y=6$
$\Rightarrow y-1+y=6\Rightarrow y=\frac{7}{2}$ (loại)
TH2: $x=-1, xy-1+y=-6$
$\Rightarrow -y-1+y=-6\Rightarrow -1=-6$ (vô lý - loại)
TH3: $x=2, xy-1+y=3$
$\Rightarrow 2y-1+y=3\Rightarrow 3y=4\Rightarrow y=\frac{4}{3}$ (loại)
TH4: $x=-2, xy-1+y=-3$
$\Rightarrow -2y-1+y=-3$
$\Rightarrow -y-1=-3\Rightarrow y=2$ (tm)
TH5: $x=3, xy-1+y=2\Rightarrow 3y-1+y=2$
$\Rightarrow 4y=3\Rightarrow y=\frac{3}{4}$ (loại)
TH6: $x=-3, xy-1+y=-2\Rightarrow -3y-1+y=-2$
$\Rightarrow -2y=-1\Rightarrow y=\frac{1}{2}$ (loại)
TH7: $x=6, xy-1+y=1$
$\Rightarrow 6y-1+y=1\Rightarrow 7y=2\Rightarrow y=\frac{2}{7}$ (loại)
TH8: $x=-6, xy-1+y=-1$
$\Rightarrow -6y-1+y=-1$
$\Rightarrow -5y=0\Rightarrow y=0$ (tm)