Cho tam giác ABC có AB>AC . Các điểm E và D theo thứ tự di chuyển trên hai cạnh AB và AC sao cho : BD=CE.Chứng minh các đường trung trực của DE luôn đi qua 1 điểm cố định.
Ai làm được bài này mới giỏi, tớ like cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu D trùng B thì E sẽ trùng với A
=>Đường trung trực của DE là trung trực của AB
Nếu D trùng A thì E trùng với C
=>Đường ttrung trực của DE là trung trực của AC
Vẽ các đường trung trực của AB,AC, cắt nhau tại O
Gọi H,I lần lượt là trung điểm của AB,AC
=>OI vuông góc AC, OH vuông góc AB
Xét ΔOHB vuông tại H và ΔOIC vuông tại I có
OB=OC
HB=IC
=>ΔOHB=ΔOIC
=>OH=OI
ΔABC đều có O là giao của các đường trung trực
nên AO,BO lần lượt là phân giác của góc BAC, góc ABC
=>góc OAE=góc OBD=30 độ
=>ΔOAE=ΔOBD
=>OD=OE
=>O nằm trên trung trực của DE
=>ĐPCM