cho tam giác ABC vuông tại A . Gọi M là trung điểm của AC . Trên tia đói của tia AC lấy điểm K sao cho BM=MK a. c/m tam giá AMB = tam giác CMK b. CK vuông AC c. AK song song BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,Xét tam giác AMB và tam giác CMK có:
AM=MB(M là trung điểm của AC)
góc AMB=góc CMK
BM=KM(gt)
=> TAm giác AMB=tam giác CMK(c.g.c)
=> góc BAM=góc KCM (hai cạnh tương ứng)
Vậy KC vuông góc với AC
P/s : Học giỏi^^
Lời giải:
a) Xét tam giác $AMB$ và tam giác $CMK$ có:
\(\left\{\begin{matrix} AM=CM\\ MB=MK\\ \angle AMB=\angle CMK(\text{ hai góc đối đỉnh})\end{matrix}\right.\)
\(\Rightarrow \triangle AMB=\triangle CMK (c.g.c)\)
b)
Từ hai tam giác bằng nhau ở phần a suy ra
\(\angle MAB=\angle MCK\Leftrightarrow \angle MCK=90^0\Rightarrow CK\perp AC\)
(đpcm)
c) Xét tam giác $AMK$ và tam giác $CMB$ có:
\(\left\{\begin{matrix} AM=CM\\ MK=MB\\ \angle AMK=\angle CMB(\text{hai góc đối đỉnh})\end{matrix}\right.\)
\(\Rightarrow \triangle AMK=\triangle CMB(c.g.c)\)
\(\Rightarrow \angle AKM=\angle CBM\). Mà hai góc này ở vị trí so le trong nên \(BC\parallel AK\)
a) Sửa đề: ΔAMB=ΔDMC
Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
c: Xét tứ giác ABCK có
M là trung điểm của AC
M là trung điểm của BK
Do đó: ABCK là hình bình hành
Suy ra: AK//BC