tìm tất cả các giá trị m để f(x)= m(x -m) - (x -1) không âm với mọi x thuộc ( vô cực , m + 1 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
m(x - m) - (x - 1) ≥ 0 ⇔ (m - 1)x ≥ m 2 - 1.
+) m = 1 ⇒ x ∈ R. (không thỏa)
+) Xét m > 1 thì (1) ⇔ x ≥ m + 1 không thỏa điều kiện nghiệm đã cho.
+) Xét m < 1 thì (1) ⇔ x ≥ m + 1 thỏa điều kiện nghiệm đã cho.
Vậy m < 1.
anh Tâm lý luận phần m>1 và m<1 hình như bị nhầm lẫn và không rõ ràng
\(f'\left(x\right)=3\left(m-1\right)x^2+4\left(m-1\right)x+m\)
- Với \(m=1\Rightarrow f'\left(x\right)=1>0\) (không thỏa mãn)
- Với \(m\ne1\Rightarrow f'\left(x\right)< 0;\forall x\) khi và chỉ khi:
\(\left\{{}\begin{matrix}\Delta'=4\left(m-1\right)^2-3m\left(m-1\right)< 0\\m-1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1< m< 4\\m< 1\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu