GIÚP EM VỚI EM CẦN GẤPPP
Cho(O) đường kính AB.Lấy điểm C thuộc đường tròn,tiếp tuyến tại A của (O) cắt BC tại D.Gọi M là trung điểm của AD.Chứng minh:
a) MC là tiếp tuyến (O).
b) OM vuông góc với AC tại trung điểm I của AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét (O) có
ΔACB nội tiếp đường tròn
AB là đường kính
Do đó: ΔACB vuông tại C
Xét ΔABD có
O là trung điểm của AB
M là trung điểm của AD
Do đó: OM là đường trung bình của ΔABD
Suy ra: OM//BD
hay OM\(\perp\)AC
a: Xét (O) có
MA,MC là các tiếp tuyến
Do đó: MA=MC
=>\(\widehat{MAC}=\widehat{MCA}\)
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>AC\(\perp\)CB tại C
=>AC\(\perp\)BD tại C
=>ΔACD vuông tại C
Ta có: \(\widehat{MDC}+\widehat{MAC}=90^0\)(ΔACD vuông tại C)
\(\widehat{MCD}+\widehat{MCA}=\widehat{DCA}=90^0\)
mà \(\widehat{MAC}=\widehat{MCA}\)
nên \(\widehat{MDC}=\widehat{MCD}\)
=>MC=MD
mà MC=MA
nên MA=MD
=>M là trung điểm của AD
b: Xét (O) có
MC,MA là các tiếp tuyến
Do đó: OM là phân giác của góc AOC
=>\(\widehat{AOC}=2\cdot\widehat{MOC}\)
Ta có: tia OC nằm giữa hai tia OM và ON
=>\(\widehat{MOC}+\widehat{NOC}=\widehat{MON}=90^0\)
=>\(\widehat{NOC}=90^0-\widehat{MOC}\)
Ta có: \(\widehat{COA}+\widehat{COB}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{COM}+\widehat{COB}=2\cdot90^0=2\cdot\widehat{COM}+2\cdot\widehat{CON}\)
=>\(\widehat{COB}=2\cdot\widehat{CON}\)
=>ON là phân giác của góc COB
Xét ΔOBN và ΔOCN có
OB=OC
\(\widehat{BON}=\widehat{CON}\)
ON chung
Do đó: ΔOBN=ΔOCN
=>\(\widehat{OBN}=\widehat{OCN}=90^0\)
=>NB là tiếp tuyến của (O)
a) Tam giác ABC vuông tại A (gt).
=> A; B; C cùng thuộc đường tròn đường kính BC. (1)
Xét đường tròn đường kính MC:
D \(\in\) đường tròn đường kính MC (gt).
=> \(\widehat{MDC}=90^o\) hay \(\widehat{BDC}=90^o.\)
Tam giác BDC vuông tại D (\(\widehat{BDC}=90^o\)).
=> B; D; C cùng thuộc đường tròn đường kính BC. (2)
Từ (1); (2) => A; B; C; D cùng thuộc đường tròn đường kính BC.
b) Xét tam giác ABC có:
+ O là trung điểm BC (gt).
+ M là trung điểm AC (gt).
=> OM là đường trung bình.
=> OM // AB (Tính chất đường trung bình).
Mà AB \(\perp\) MC (AB \(\perp\) AC).
=> OM \(\perp\) MC.
Xét đường tròn đường kính MC: OM \(\perp\) MC (cmt); M \(\in\) đường tròn đường kính MC (gt).
=> OM là tiếp tuyến.
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>ΔACD vuông tại C
mà CM là đường trung tuyến
nên CM=AD/2=AM=DM
Xét ΔMAO và ΔMCO có
MA=MC
MO chung
AO=CO
DO đó: ΔMAO=ΔMCO
Suy ra: \(\widehat{MAO}=\widehat{MCO}=90^0\)
hay MC là tiếp tuyến của (O)
b: Ta có: MC=MA
nên M nằm trên đường trung trực của AC(1)
Ta có: OC=OA
nên O nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra OM là đường trung trực của AC
hay OM vuông góc với AC tại trung điểm của AC