Chứng minh với mọi x thì x^2+x+1chia hết cho cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các thiên tài đi đâu hết rùi, bài này tui đăng thử xem sao thui mà ko có ai giải đc
Lời giải:
Giả sử $n^2+n+9\vdots 49$
$\Rightarrow n^2+n+9\vdots 7$
$\Leftrightarrow n^2+n-7n+9\vdots 7$
$\Leftrightarrow (n-3)^2\vdots 7$
$\Leftrightarrow n-3\vdots 7(*)$
$\Leftrightarrow (n-3)^2\vdots 49$
$\Leftrightarrow n^2-6n+9\vdots 49$
$\Leftrightarrow (n^2+n+9)-7n\vdots 49$
$\Leftrightarrow 7n\vdots 49$ (do $n^2+n+9\vdots 49$ theo giả sử)
$\Leftrightarrow n\vdots 7$ (vô lý theo $(*)$)
Vậy điều giả sử là sai. Tức là $n^2+n+9\not\vdots 49$ với mọi $n$ nguyên.
a) x(x² + x) + x(x + 1)
= x²(x + 1) + x(x + 1)
= (x + 1)(x² + x)
= x(x + 1)² ⋮ (x + 1)
b) xy² - yx² + xy
= xy(y - x + 1) ⋮ xy
Ta có: \(\left(x^{200}+x^{100}+1\right)=\left(x^{100}+1\right)^2\)
\(\left(x^4+x^2+1\right)=\left(x^2+1\right)^2\)
Vì \(1⋮1;x^{100}⋮x^2\forall x\)
\(\Rightarrow x^{100}+1⋮x^2+1\forall x\)
\(\Rightarrow Vớix\in Z,\left(x^{200}+x^{100}+1\right)⋮\left(x^4+x^2+1\right)\)