S = 1/31 + 1/32 + 1/33 + ..... + 1/60
Chứng tỏ S > 3/5
Các bạn nhớ ghi cách giải giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách đơn giản nhất và lố nhất :
Cộng tất cả vào rùi tìm S = bao nhiêu
Rồi so sánh thôi , đã chứng tỏ
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự ta có : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Mà khi đó ta thấy: (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Do : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
Ta thấy : các số hạng trong tổng S đều \(>\frac{7}{35}\)
\(\Rightarrow S>\frac{7}{35}+\frac{7}{35}+\frac{7}{35}+\frac{7}{35}+\frac{7}{35}\)
\(\Rightarrow S>\frac{35}{35}\)
\(\Rightarrow S>1\) ( đpcm )
Ta có: \(S=\left(5-\frac{2}{3}+\frac{3}{2}\right)-\left(7-\frac{5}{4}-\frac{1}{2}\right)-\left(1-\frac{4}{3}+\frac{2}{5}\right).\)
\(\Rightarrow S=\left(\frac{13}{3}+\frac{3}{2}\right)-\left(\frac{23}{4}-\frac{1}{2}\right)-\left(\frac{-1}{3}+\frac{2}{5}\right)\)
\(\Rightarrow S=\frac{35}{6}-\frac{21}{4}-\frac{1}{15}\)
\(\Rightarrow S=\frac{7}{12}-\frac{1}{15}=\frac{31}{60}\)
Vậy \(S=\frac{31}{60}\)
Ta có :
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{59}+\frac{1}{60}\)
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\Rightarrow S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)
\(\Rightarrow S>\frac{1}{40}\cdot10+\frac{1}{50}\cdot10+\frac{1}{60}\cdot10\)
\(\Rightarrow S>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
\(\Rightarrow S>\frac{37}{60}>\frac{36}{60}\) \(=\frac{3}{5}\)
\(\Rightarrow S>\frac{3}{5}\left(đpcm\right)\)
Giải:
S=\(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\)
Có 30 phân số; chia làm 3 nhóm
S<\(\left(\dfrac{1}{30}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{40}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{50}+...+\dfrac{1}{50}\right)\)
S<\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\)
S<\(\dfrac{47}{60}< \dfrac{48}{60}=\dfrac{4}{5}\)
⇒S<\(\dfrac{4}{5}\) (đpcm)
Chúc bạn học tốt!