K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2021

Hình tự vẽ nha bạn.

a) Xét \(\Delta ABH\) và \(\Delta ACH:\)

AH: Cạnh chung

AB=AC(gt)

\(\widehat{AHB}=\widehat{AHC}=90^o\)

=> \(\Delta ABH=\Delta ACH\left(ch.cgv\right)\)

=>BH=HC

b) Theo câu a: \(\Delta ABH=\Delta ACH\)

=> \(\widehat{BAH}=\widehat{CAH}\)

Xét \(\Delta AFH\) và \(\Delta AEH:\)

AH: cạnh chung

\(\widehat{FAH}=\widehat{EAH}\left(cmt\right)\)

\(\widehat{AFH}=\widehat{AEH}=90^o\)

=> \(\Delta AFH=\Delta AEH\left(ch.gn\right)\)

=> AF=AE

c) Theo câu b: AF=AE

=> Tam giác AEF cân tại A

=> \(\widehat{AFE}=\dfrac{180^o-\widehat{FAE}}{2}\)

Mà \(\widehat{ABC}=\dfrac{180^o-\widehat{BAC}}{2}\)

=> \(\widehat{AFE}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị

=> EF//BC

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trug điểm của BC

hay HB=HC

b: BC=6cm

nên BH=3cm

=>\(AH=\sqrt{10^2-3^2}=\sqrt{91}\left(cm\right)\)

c: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có

AH chung

\(\widehat{EAH}=\widehat{FAH}\)

Do đó: ΔAEH=ΔAFH

Suy ra: AE=AF

hay ΔAEF cân tại A

2 tháng 3 2022

bạn có thể làm câu d giúp mình đc k ah. mình cảm ơn rất nhìu ạ

 

28 tháng 4 2016

999 - 888 - 111 + 111 - 111 + 111 - 111

= 111 - 111 + 111 -111 + 111 - 111

= 0 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111

= 0 + 111 - 111

= 111 - 111

= 0

Đáp số: 0

28 tháng 4 2016

hình tự vẽ

a)Xét tam giác AHB vuông ở H và tam giác AHC vuông ở H có:

AH:cạnh chung

AB=AC (gt)

=>tam giác AHB = tam giác AHC (ch-cgv)

=>HB = HC (cặp cạnh tương ứng)

và góc BAH = góc CAH (cặp góc tương ứng)

b)Vì góc BAH = góc CAH (cmt)

=>góc DAH = góc EAH

Xét tam giác AHD vuông tại D và tam giác AHE vuông tại E có:

AH:cạnh chung

góc DAH = góc EAH (cmt)

=>tam giác AHD = tam giác AHE (ch-gn)

=>AD = AE (cặp cạnh tương ứng)

và HD = HE (cặp cạnh tương ứng)

Xét tam giác HDE có: HD = HE (cmt)

=>tam giác HDE cân và cân ở H (DHNB tam giác cân)

28 tháng 4 2016

c)Vì HB = HC (cmt)

Mà HB + HC = BC (vì H thuộc BC)

=>HB = HC = BC/2 = 16/2 = 8 (cm)

Xét tam giác AHB vuông tại H có: AH2+HB2 = AB2 (đ/l PyTaGo0

=>AH2 = AB2 - HB2 = 102 - 82 = 100 - 64 =36 = 62

=>AH = 6 (cm)

a: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

b: ΔHAB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF và ΔACB có

AE/AC=AF/AB

góc A chung

=>ΔAEF đồng dạng với ΔACB

c: góc AFE+góc MAC

=góc C+góc AHE

=góc C+góc ABC=90 độ

=>AM vuông góc EF

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC,ta được:

\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=7,2\left(cm\right)\\BH=5,4\left(cm\right)\\CH=9,6\left(cm\right)\end{matrix}\right.\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(HB\cdot HC=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HB\cdot HC=AE\cdot AB\)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>DH=EH

=>ΔHDE cân tại H