Cho đường thẳng (d3) y=2mx-3m+1. Tìm m sao cho khoảng cách từ O đến đường thẳng (d3) là lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc pt đường thẳng là \(y=\left(3m-2\right)x+m-2\)
Viết lại dưới dạng:
\(\left(3x+1\right)m-\left(2x+y+2\right)=0\)
Ta được điểm \(M\left(-\dfrac{1}{3};-\dfrac{4}{3}\right)\) là điểm cố định thuộc (d)
Gọi H là chân đường vuông góc hạ từ O xuống d thì theo định lý đường xiên - đường vuông góc ta luôn có \(OH\le OM\Rightarrow OH_{max}=OM\) khi H trùng M hay đường thẳng (d) vuông góc OM
Phương trình OM có dạng: \(y=4x\Rightarrow\) (d) vuông góc OM khi \(\left(3m-2\right).4=-1\)
\(\Rightarrow m=\dfrac{7}{12}\)
Lời giải:
ĐK: $3m+1\neq 0$
Gọi $A,B$ lần lượt là giao điểm của $(d)$ với $Ox,Oy$
Vì $A\in Ox$ nên $y_A=0$
$y_A=(3m+1)x_A-6m-1=0$
$\Rightarrow x_A=\frac{6m+1}{3m+1}$
Vậy $A(\frac{6m+1}{3m+1},0)$
Tương tự: $B(0, -6m-1)$
Gọi $h$ là khoảng cách từ $O$ đến $(d)$
Khi đó, theo hệ thức lượng trong tam giác vuông ta có:
$\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}$
$=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}$
$=\frac{(3m+1)^2}{(6m+1)^2}+\frac{1}{(6m+1)^2}$
$=\frac{(3m+1)^2+1}{(6m+1)^2}$
Để $h$ max thì $\frac{1}{h^2}$ min
Hay $\frac{(3m+1)^2+1}{(6m+1)^2}$ min
Áp dụng BĐT Bunhiacopxky:
$[(3m+1)^2+1][2^2+(-1)^2]\geq [2(3m+1)+(-1)]^2=(6m+1)^2$
$\Rightarrow 5[(3m+1)^2+1]\geq (6m+1)^2$
$\Rightarrow \frac{1}{h^2}\geq \frac{1}{5}$
Giá trị này đạt tại $\frac{3m+1}{2}=\frac{1}{-1}$
$\Leftrightarrow m=-1$
1, hoành độ giao điểm của hai điểm
\(\hept{\begin{cases}y=x+2\\y=-3x+4\end{cases}}\) là nghiệm của pt
\(\Leftrightarrow x+2=-3x+4\)
\(\Leftrightarrow x=\frac{1}{2}\) <=> y= 5/2
thay vào pt (d) <=> m= -3
2 bạn viết lại đề nhé
3 gọi điểm cố định mà (d) luôn đi qua là (x0;y0) với mọi m. khi đó pt
\(y._0=\left(m-2\right)x._0+2-m\) có nghiệm với mọi m
\(\Leftrightarrow mx._0-2x_0+2-m-y._0=0\)
\(\Leftrightarrow\left(x._0-1\right)m-y._0+2=0\)
để đồ thi đi qua điểm cố định với mọi m thì
\(\hept{\begin{cases}x_0-1=0\\-y_0+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=1\\y_0=2\end{cases}}}\)
d luôn đi qa (1;2)