K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 1 2021

Chắc pt đường thẳng là \(y=\left(3m-2\right)x+m-2\)

Viết lại dưới dạng:

\(\left(3x+1\right)m-\left(2x+y+2\right)=0\)

Ta được điểm \(M\left(-\dfrac{1}{3};-\dfrac{4}{3}\right)\) là điểm cố định thuộc (d)

Gọi H là chân đường vuông góc hạ từ O xuống d thì theo định lý đường xiên - đường vuông góc ta luôn có \(OH\le OM\Rightarrow OH_{max}=OM\) khi H trùng M hay đường thẳng (d) vuông góc OM

Phương trình OM có dạng: \(y=4x\Rightarrow\) (d) vuông góc OM khi \(\left(3m-2\right).4=-1\)

\(\Rightarrow m=\dfrac{7}{12}\)

24 tháng 5 2021

CÔ ƠI CHO EM HỎI Y=4X LẤY Ở ĐÂU RA Ả CÔ????

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

Lời giải:

ĐK: $3m+1\neq 0$

Gọi $A,B$ lần lượt là giao điểm của $(d)$ với $Ox,Oy$

Vì $A\in Ox$ nên $y_A=0$

$y_A=(3m+1)x_A-6m-1=0$

$\Rightarrow x_A=\frac{6m+1}{3m+1}$

Vậy $A(\frac{6m+1}{3m+1},0)$

Tương tự: $B(0, -6m-1)$

Gọi $h$ là khoảng cách từ $O$ đến $(d)$

Khi đó, theo hệ thức lượng trong tam giác vuông ta có:

$\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}$

$=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}$

$=\frac{(3m+1)^2}{(6m+1)^2}+\frac{1}{(6m+1)^2}$
$=\frac{(3m+1)^2+1}{(6m+1)^2}$

Để $h$ max thì $\frac{1}{h^2}$ min 

Hay $\frac{(3m+1)^2+1}{(6m+1)^2}$ min

Áp dụng BĐT Bunhiacopxky:

$[(3m+1)^2+1][2^2+(-1)^2]\geq [2(3m+1)+(-1)]^2=(6m+1)^2$
$\Rightarrow 5[(3m+1)^2+1]\geq (6m+1)^2$

$\Rightarrow \frac{1}{h^2}\geq \frac{1}{5}$

Giá trị này đạt tại $\frac{3m+1}{2}=\frac{1}{-1}$

$\Leftrightarrow m=-1$

10 tháng 11 2018

thế nào là số nguyên tố ,hợp số?cho ví dụ

10 tháng 11 2018

1,      hoành độ giao điểm của hai điểm

\(\hept{\begin{cases}y=x+2\\y=-3x+4\end{cases}}\)  là nghiệm của pt

\(\Leftrightarrow x+2=-3x+4\)

\(\Leftrightarrow x=\frac{1}{2}\)  <=> y= 5/2

thay vào pt (d)  <=> m= -3

2 bạn viết lại đề nhé 

3 gọi điểm cố định mà (d) luôn đi qua là  (x0;y0)   với mọi m. khi đó pt

\(y._0=\left(m-2\right)x._0+2-m\)  có nghiệm với mọi m

\(\Leftrightarrow mx._0-2x_0+2-m-y._0=0\)

\(\Leftrightarrow\left(x._0-1\right)m-y._0+2=0\)

để đồ thi đi qua điểm cố định với mọi m thì 

\(\hept{\begin{cases}x_0-1=0\\-y_0+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=1\\y_0=2\end{cases}}}\)

d luôn đi qa (1;2)

4 tháng 9 2021

ai giup vs