Chứng tỏ rằng: 1/3^3 + 1/5^3 + 1/7^3 +..+ 1/2021^3 < 1/12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯC của 4n + 7 và 6n + 1
Khi đó : 4n + 7 chia hết cho d và 6n + 1 chia hết cho d
<=> 12n + 21 chia hết cho d và 12n + 2 chia hết cho d
=> (12n + 21) - ( 12n + 2) chia hết cho d = > 19 chia hết cho d
Vì 19 là số nguyên tố => d = 1
Vậy \(\frac{4n+7}{6n+1}\) Là p/s tối giản
Nếu n = 3 thì 4n+7/6n+1=1 đâu phải là phân số tối giản
Ta có \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{7\cdot8}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow A< 1-\frac{1}{8}< 1\)
a, Gọi d là ƯC(12n + 1; 30n + 2 ), ta có :
12n + 1 chia hết cho d => 5( 12n + 1 ) chia hết cho d
30n + 2 chia hết cho d => 2 ( 30n + 2 ) chia hết cho d
-> 5( 12n + 1 ) - 2( 30n + 2 ) chia hết cho d
=> 1 chia hết cho d
vậy d = 1 nên 12n + 1 và 30n + 2 nguyên tố cùng nhau
=> \(\frac{12n+1}{30n+2}\)là phân số tối giản
b, ta có : \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.....
\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Ta có \(\dfrac{1}{3^3}< \dfrac{1}{2.3.4}=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)\)
\(\dfrac{1}{5^3}< \dfrac{1}{4.5.6}=\dfrac{1}{2}\left(\dfrac{1}{4.5}-\dfrac{1}{5.6}\right)\\ ...\\ \dfrac{1}{2021^3}< \dfrac{1}{2020.2021.2022}=\dfrac{1}{2}\left(\dfrac{1}{2020.2021}-\dfrac{1}{2021.2022}\right)\)
Cộng VTV ta được
\(VT< \dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{2021.2022}\right)=\dfrac{1}{12}-\dfrac{1}{2\left(2021.2022\right)}< \dfrac{1}{12}\)
\(n^3=n.n^2>n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
\(\dfrac{1}{n^3}< \dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)
\(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{2}.\dfrac{n+1-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\right)\)
\(\dfrac{1}{3^3}+\dfrac{1}{5^3}+.......+\dfrac{1}{2009^3}< \dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+.....\dfrac{1}{2008.2009.2010}=\dfrac{1}{2}\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+.........+\dfrac{1}{2008.2009}-\dfrac{1}{2009.2010}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{2009.2010}\right)\)
\(=\dfrac{1}{2}\)