So sánh:
\(\frac{2014^{61}}{2014^{60}}\)
và \(\frac{2014^{98}}{2014^{97}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{2013}{2015}< \frac{2014}{2016}\)
b)\(\frac{2013+2014}{2014+2015}< \frac{2013}{2014}+\frac{2014}{2015}\)
ta xét vế M
đầu tiên bạn tách 2014 ra ngoài
sau đó nhân 2 vào tử và mẫu , rồi tách 1/2 ra ta có 1007 .( ..........................)
bây giờ tính vế trong ngoặc và trong ngoặc <1
=> M>N
Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015}\) (1)
\(\frac{2014}{2015}>\frac{2014}{2014+2015}\) (2)
ộng caác bất đẳng thứa (1) và (2) vào vế với vế:
\(\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013+2014}{2014+2015}\Rightarrow A>B\)
Có \(A=\frac{98^{2015}+1}{98^{2014}+1}>1\)
nên \(A=\frac{98^{2015}+1}{98^{2014}+1}>\frac{98^{2015}+1+97}{98^{2014}+1+97}=\frac{98^{2015}+98}{98^{2014+98}}\)\(=\frac{98\left(98^{2014}+1\right)}{98\left(98^{2013}+1\right)}=\frac{98^{2014}+1}{98^{2013}+1}=B\)
Vậy A>B
Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B
Ta có:
2014A=20142014+ 2014/20142014+1=1+2013/20142014+1
2014B=20142013+2014/20142013+1=1+2013/20142013+1
vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B
suy ra A<B
ta thấy:
2^2014<2^2014+2
=>\(\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+1}{2^{2014}+2}\)
vậy......
Có : 22014 + 1 > 22014 nên \(\frac{2^{2014}+1}{2^{2014}}\)> 1 .
22104 + 1 < 22014 + 2 nên \(\frac{2^{2014}+1}{2^{2014}+2}\)< 1.
=> \(\frac{2^{2014}+1}{2^{2014}}\)>\(\frac{2^{2014}+1}{2^{2014}+2}\)
A=\(\frac{2014}{2014^a}+\frac{2014}{2014^b}\)=B=\(\frac{2013}{2015^a}\)+\(\frac{2015}{2013^b}\)
Ta có: 2014/\(2014^a\)+2014/2014^b= 2013/2014^a + 1/2014^a +2015/2014^a - 1/2014^a
=(2013/2014^a + 2015/2014^b) + ( 1/2014^a + 1/2014^b)
= B + (1/2014^a + 1/2014^b)
*Nếu a=b thì A=B
*Nếu a>b thì (1/2014^a + 1/2014^b) >0
\(\Rightarrow\) A< B
*Nếu a<b thì (1/2014^a + 1/2014^b)>0
\(\Rightarrow\) A>B
Bạn ơi là phân số hay số vậy
\(\frac{2014^{61}}{2014^{60}}\)có phần thừa tới 1 là: \(\frac{2014}{2014^{60}}\)
\(\frac{2014^{98}}{2014^{97}}\)có phần thừa tới 1 là: \(\frac{2014}{2014^{97}}\)
Vì \(\frac{2014}{2014^{60}}>\frac{2014}{2014^{97}}\) nên \(\frac{2014^{61}}{2014^{60}}>\frac{2014^{98}}{2014^{97}}\)