Biết n!=1.2.3.....n (n> hoặc =2)
chứng tỏ rằng:A=1/2!+2/3!+.......+2013/2014!<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình đoán bạn thi học sinh giỏi. Bạn yên tâm đi, lớp 6 chưa hoc ! ( than cảm) đâu nên cô sẽ ko mắng. Mình cũng thi, cô bảo ko phải làm đó
\(A=\frac{1}{2!}+\frac{2}{3!}+...+\frac{2013}{2014!}=\frac{2-1}{2!}+\frac{3-1}{3!}+...+\frac{2014-1}{2014!}\)
\(=1-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{2014}{2014!}-\frac{1}{2014!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{2013!}-\frac{1}{2014!}\)
\(=1-\frac{1}{2014!}<1\)
CM $\frac{1}{2!}+\frac{2}{3!}+...+\frac{n-1}{n!} = \frac{n-1}{n!}$ với $n$ là số tự nhiên thỏa mãn $n\geq 2$
Bạn tham khảo lời giải tại link sau:
https://hoc24.vn/cau-hoi/cho-a122389910so-sanh-a-voi1voi-n123ntich-cua-n-so-tu-nhien-khac-0-dau-tien.3965156752
Áp dụng kết quả trên:
$\frac{1}{2!}+\frac{2}{3!}+...+\frac{2013}{2014!}=\frac{2014!-1}{2014!}<1$
$\Rightarrow \frac{2}{3!}+...+\frac{2013}{2014!}< 1-\frac{1}{2!}=\frac{1}{2}$
Ta có đpcm.