cho A = \(\frac{1}{1.102}+\frac{1}{2.103}+...+\frac{1}{299.400}\)
Chứng minh A = \(\frac{1}{101}\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/
a, Có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2005^2}< \frac{1}{2004.2005}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2004.2005}=B\)
b, \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2004.2005}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2004}-\frac{1}{2005}=1-\frac{1}{2005}< 1\)
3/
Ta có: \(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};...;\frac{1}{200}< \frac{1}{100}\)
\(\Rightarrow A< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\left(100ps\right)=\frac{1}{100}\cdot100=1\left(1\right)\)
Lại có: \(\frac{1}{101}>\frac{1}{200};\frac{1}{102}>\frac{1}{200};...;\frac{1}{200}=\frac{1}{200}\)
\(\Rightarrow A>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\left(100ps\right)=\frac{1}{200}\cdot100=\frac{1}{2}\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{2}< A< 1\)
S= 1/199 + 2/198 + ... + 198/2 + 199/1
S= (1/199 + 1) + (2/198 + 1)+ ... + (198/2 + 1) +1
S= 200/200 + 200/199 + 200/198 + ... + 200/2
S= 200.(1/200 + 1/199 + ... + 1/2)
Suy ra , B=(1/2 + 1/3 + ... +1/200) : 200.(1/2 + 1/3 + ... + 1/200)
B=1 : 200 = 1/200
Bài 1:\(A=1-\frac{1}{2}+1-\frac{1}{6}+.......+1-\frac{1}{9900}\)
\(=1-\frac{1}{1.2}+1-\frac{1}{2.3}+........+1-\frac{1}{99.100}\)
\(=99-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\right)=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)
\(=99-\left(1-\frac{1}{100}\right)=99-\frac{99}{100}=\frac{9801}{100}\)
Bài 2:\(A=\frac{1}{299}.\left(\frac{299}{1.300}+\frac{299}{2.301}+.........+\frac{299}{101.400}\right)\)
\(=\frac{1}{299}.\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+.........+\frac{1}{101}-\frac{1}{400}\right)\)
\(=\frac{1}{299}.\left(1+\frac{1}{2}+......+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-.......-\frac{1}{400}\right)\)
\(=\frac{1}{299}.\left[\left(1+\frac{1}{2}+.......+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+......+\frac{1}{400}\right)\right]\)(đpcm)
1/
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{9900}\right)\)
\(=\left(1+1+...+1\right)\left(50so\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\right)\)
\(=50-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=50-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=50-\left(1-\frac{1}{100}\right)=49+\frac{1}{100}=\frac{4901}{100}\)
2/
\(=\frac{1}{299}\left(\frac{299}{1.300}+\frac{299}{2.301}+...+\frac{299}{101.400}\right)\)
\(=\frac{1}{299}\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\right)\)
\(=\frac{1}{299}\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\)
\(A=\frac{1}{1.300}+\frac{1}{2.301}+..........+\frac{1}{101.400}\Rightarrow299A=\frac{299}{1.300}+\frac{299}{2.301}+........+\frac{299}{101.400}\)
\(\Rightarrow299A=1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...........+\frac{1}{101}-\frac{1}{400}\Rightarrow299A=\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+.......+\frac{1}{400}\right)\)\(\Rightarrow\)\(A=\frac{1}{299}\left(\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right)\)