cho bieu thuc 30% *y+y=52 tim y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\)
Áp dụng Bunyakovsky dạng phân thức : \(\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\)(1)
Ta có : \(\sqrt{z\left(x+y\right)}\le\frac{x+y+z}{2}\)( theo AM-GM )
=> \(z\left(x+y\right)\le\left(\frac{x+y+z}{2}\right)^2=\left(\frac{6}{2}\right)^2=9\)
=> \(\frac{1}{z\left(x+y\right)}\ge\frac{1}{9}\)=> \(\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)(2)
Từ (1) và (2) => \(P=\frac{x+y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)
=> P ≥ 4/9
Vậy MinP = 4/9, đạt được khi x = y = 3/2 ; z = 3
Áp dụng bất đẳng thức:
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\Rightarrow\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|\)
\(\Rightarrow\left|x+1\right|+\left|y-2\right|\ge\left|3-1\right|\)
\(\Rightarrow\left|x+1\right|+\left|y-2\right|\ge2\)
Dấu "=" xảy ra khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\Rightarrow x\ge-1\\y-2\ge0\Rightarrow y\ge2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\y-2< 0\Rightarrow y< 2\end{matrix}\right.\end{matrix}\right.\)
Vậy các cặp \(x;y\) thỏa mãn là:
\(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
30%*y+y=52
130%*y=52
y=52*100:30=40
k nha bạn
40 toi xin cac ban k cho toi di