1. Cho a,b là hai số dương thõa mãn a+b<ab. Chừng minh: a+b>4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{5}=\frac{b}{6}=>\frac{a^2}{25}=\frac{b^2}{36}=>\frac{2a^2}{50}=\frac{b^2}{36}\)
áp dụng .... ta có;
\(\frac{2a^2}{50}=\frac{b^2}{36}=\frac{2a^2-b^2}{50-36}=\frac{56}{14}=4\)
từ 2a^2/50=4=>2a^2=200=>a^2=100=>a=+10
b^2/36=4=>b^2=144=>b=+12
vì a;b là 2 số dương >a=10;b=12
khi đó a+b=10+12=22
tick đúng cho tớ nhé
Câu 1: xy + x - y = 4
<=> (xy + x) - (y+ 1) = 3
<=> x(y+1) - (y + 1) = 3
<=> (y + 1) (x - 1) = 3
Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.
Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:
* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)
* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)
Vậy x = y = 2.
Câu 2:
Ta có:
(a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0
Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c
Sửa đề: 1+a^2;1+b^2;1+c^2
\(\dfrac{a}{\sqrt{1+a^2}}=\dfrac{a}{\sqrt{a^2+ab+c+ac}}=\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}< =\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
\(\dfrac{b}{\sqrt{1+b^2}}< =\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{b+a}\right)\)
\(\dfrac{c}{\sqrt{1+c^2}}< =\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{a+b}\right)\)
=>\(A< =\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}\)
thật ra là có 1 bài rút gọn nx, nhưng mik làm đc rồi. bài rút gọn đó ra A=-1, đây là ý tiếp theo của bài đó :<
\(A=\frac{9}{6ab}+\frac{9}{3\left(a^2+b^2\right)}+\frac{1}{2ab}\)
\(\ge\frac{\left(3+3\right)^2}{3\left(a+b\right)^2}+\frac{1}{2\cdot\frac{\left(a+b\right)^2}{4}}\)
\(=\frac{\left(3+3\right)^2}{3\cdot1^2}+\frac{1}{2\cdot\frac{1^2}{4}}=14\)
\("="\Leftrightarrow a=b=\frac{1}{2}\)
Có : (a-b)^2 >= 0
<=> a^2+b^2 >= 2ab
<=> 2(a^2+b^2) >= a^2+b^2+2ab = (a+b)^2
<=> a^2+b^2 >= (a+b)^2/2
=> A >= (4^2/2)/4 = 8/4 = 2
Dấu "=" xảy ra <=> a=b=2
Vậy Min A = 2 <=> a=b=2
Tk mk nha
Ta có: \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Rightarrow a^2+b^2\ge8\)
\(\Rightarrow A=\frac{a^2+b^2}{4}\ge2\)
biến đổi tương đương thôi , EZ !
\(BĐT< =>\frac{a\left(c+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}+\frac{b\left(a+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}+\frac{c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}\)
\(< =>\frac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}\)
\(< =>\frac{ab+bc+ca+a+b+c}{ab+bc+ca+a+b+c+1+abc}\ge\frac{3}{4}\)
\(< =>4\left(ab+bc+ca+a+b+c\right)\ge3\left(ab+bc+ca+a+b+c\right)+6\)
\(< =>ab+bc+ca+a+b+c\ge6\)
Theo đánh giá của Bất đẳng thức Cauchy thì :
\(ab+bc+ca\ge3\sqrt[3]{abbcca}=3\sqrt[3]{a^2b^2c^2}\)
\(a+b+c\ge3\sqrt[3]{abc}\)
Vậy Bất đẳng thức được hoàn tất chứng minh
Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)