cho 4 so nguyen duong a b c dsao cho a2 + b2 = c2+d2 .CMR: tong a+b+c+d la hop so
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\ge\dfrac{4}{\dfrac{a^2+1}{2}+b^2+1+\dfrac{c^2+1}{2}}=\dfrac{8}{b^2+7}\)
Tương tự
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{8}{a^2+7}\)
\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{8}{c^2+7}\)
Cộng vế:
\(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{8}{a^2+7}+\dfrac{8}{b^2+7}+\dfrac{8}{c^2+7}\)
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{4}{a^2+7}+\dfrac{4}{b^2+7}+\dfrac{4}{c^2+7}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Để cho tổng 5 số bất kì là 1 số nguyên dương thì trong 21 số này chắc chắn phải có 1 số lớn hơn 0(số dương),nếu không sẽ không thỏa mãn điều kiện tổng 5 số bất kì là số nguyên dương.
Ta lấy 5 số nguyên bất kì ghép thành 1 cặp,có 21 số nên ta ghép được 4 cặp nha^^,như vậy,tổng 4 cặp này luôn là 1 số nguyên dương(theo đề bài).Còn 1 số thì ở đoạn đầu như mình đã nói,chắc chắn phải có ít nhất 1 số dương,và đó chính là số còn lại(do tổng 5 số bất kì luôn dương mà).Mà 5 số dương cộng với nhau luôn ra số dương
Vậy tổng của 21 số đó luôn luôn là một số nguyên dương
Chúc bạn học tốt^^
Do giả thiết đề bài nên trong 21 số đã cho , có tối đa 4 số nguyên ko dương => các số còn lại là dương
gọi 4 số đó là : a1 ; a2 ; a3 ; a4
Do giả thiết nên tồn tại sao cho S = x + a1 + a2 + a3 + a4 > 0
Lấy tổng của S và 15 số dương còn lại .Dĩ nhiên tổng mới sẽ là số dược ( đpcm )
Vì \(n^2-n=n\left(n-1\right)\) luôn là số chẵn với mọi số nguyên \(n\)
nên do đó, \(a^2+b^2+c^2+d^2-\left(a+b+c+d\right)\) là số chẵn \(\left(1\right)\)
Mà \(a^2+b^2=c^2+d^2\) (theo giả thiết)
nên \(a^2+b^2+c^2+d^2=2\left(a^2+b^2\right)\) là một số chẵn \(\left(2\right)\) (do tích trên chia hết cho \(2\))
\(\left(1\right)\) và \(\left(2\right)\) suy ra \(a+b+c+d\) là một số chẵn
Vậy, \(a+b+c+d\) luôn là hợp số với \(a,b,c,d\in Z^+\)