cho b>a>0 ,3a2+b2=4ab. Tinh (a-b)/(a+b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3a^2 + b^2 - 4ab = 0
<=> a^2 - 2ab + b^2 + 2a^2 - 2ab = 0
<=> (a-b)(3a-b) = 0
=> a = b hoặc a = b/3
Mà b>a>0 => a = b/3
Thế vào A ta có: (b/3 - b) / (b/3 + b)
Rút gọn ta được: A = (1/3 - 1) / (1/3 + 1) = -1/2
Ta có a-4ab=b. suy ra: \(a=b+4ab\)
Suy ra: \(P=\frac{b+4ab+b}{b+4ab-b}=\frac{2b+4ab}{4ab}=1+\frac{1}{2a}\)
Áp dụng bất đẳng thức Cô-si với hai số \(a,b\) không âm, ta có:
\(a+b\ge2\sqrt{ab}\) \(\left(1\right)\)
\(ab+1\ge2\sqrt{ab}\) \(\left(2\right)\)
Nhân \(\left(1\right)\) với \(\left(2\right)\) vế theo vế, ta được:
\(\left(a+b\right)\left(ab+1\right)\ge4ab\) \(\left(đpcm\right)\)
Dấu \(''=''\) xảy ra \(\Leftrightarrow\) \(a=b\) và \(ab=1\) \(\Leftrightarrow\) \(a=b=1\) (do \(a>0\) và \(b>0\), tức \(a,b\) dương)
Chú ý (không ghi): bài này có nhiều cách, bạn có thể tìm cách mới!
Ta bien doi BDT can chung minh
\(a+b\ge\frac{4ab}{1+ab}\)
\(\Leftrightarrow a+a^2b+b+ab^2\ge4ab\)
\(\Leftrightarrow a+\frac{1}{a}+b+\frac{1}{b}\ge4\)
Ta co:
\(a+\frac{1}{a}\ge2\)
\(b+\frac{1}{b}\ge2\)
\(\Rightarrow a+\frac{1}{a}+b+\frac{1}{b}\ge4\)
Dau '=' xay ra khi \(a=b=1\)
Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)
Với a, b > 0, ta có:
\(a^2+b^2\ge2ab\)
\(\left(a+b\right)^2\ge4ab\)
\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.
Phân phối số hạng hợp lí để áp dụng Côsi
\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)
\(\ge6\)
Dấu "=" xảy ra khi a = b = 1/2.
\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)
\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)
\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)