Cho a,b,c thỏa mãn:a+b+c=0
cmr:ab+bc+ca\(\le0\)
các bn ơi giúp mk với !mk đang cần gấp!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{17}>\sqrt{16}\) , \(\sqrt{26}>\sqrt{25}\)
=>\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)
mà \(\sqrt{99}< \sqrt{100}=10\)
=> a > b
Chu vi của tam giác ABC là
C=AB+BC+CA=10+24+30=64(cm)
Ta có : tg A'B'C' đồng dạng tg ABC
=>\(\dfrac{CvitgA'B'C'}{CvitgABC}=\dfrac{A'B'}{AB}\left(tisochuvi=tisodongdang\right)\)
=>\(\dfrac{128}{64}=\dfrac{A'B'}{10}\)
=>A'B'=\(\dfrac{128.10}{64}=20\left(cm\right)\)
Chứng minh tương tự B'C'=60cm
A'C'=48cm
A B C A" B" C"
ta có:
\(\dfrac{AB"}{AB}=\dfrac{AC"}{AC}=\dfrac{BC"}{BC}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{AB"+AC"+BC"}{AB+AC+BC}=\dfrac{128}{10+24+30}=\dfrac{128}{64}=2\)
\(AB"=2.10=20\)
\(AC"=2.24=48\)
\(BC"=2.30=60\)
Vậy AB" = 20cm , AC"=48cm, BC"=60cm
a b c
Giả sử b và c cắt nhau tại M . Vì b // a ; c // a nên điểm chung của b và c là M không nằm trên a , tức qua điểm M nằm ngoài a có thể vẽ được đến 2 đường thẳng phân biệt b,c là trái với tiên đề Ơ -clit thay vì chỉ 1 (phản chứng)
=> b , c không cắt nhau => b // c
a, mik sẽ vẽ cuối bài
b,b //c
c, b//a, a//c => b//c ( theo tính chất của ba đường thẳng // )