Chứng minh rằng: x2 - 2x +3 ≥ 2 với mọi số thực x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 > 2( x - 1 )
<=> x2 - 2x + 2 > 0
<=> ( x2 - 2x + 1 ) + 1 > 0
<=> ( x - 1 )2 + 1 > 0 ( luôn đúng ∀ x ∈ R )
Vậy bđt ban đầu được chứng minh
Ta có:
\(x^2-x+1\)
\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\) và \(\dfrac{3}{4}>0\)
Nên: \(x^2-x+1>0\)
\(x^2-x+1\)
\(=x^2-\dfrac{1}{2}.x-\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=x\left(x-\dfrac{1}{2}\right)-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x ( đpcm )
a) Đề sai thì phải.Phải là CM: \(x^2-x+1>0\) với mọi x
Ta có:
\(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\) nên \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy \(x^2-x+1>0\) với mọi \(x\in R\)
b)Ta có:
\(-x^2+2x-4=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Vì \(-\left(x-1\right)^2\le0\) với mọi x nên \(-\left(x-1\right)^2-3< 0\)
Vậy \(-x^2+2x-4< 0\) với mọi \(x\in R\)
`A=x(x-6)+10=x^2-6x+10`
`=x^2 -2.x .3 + 3^2 + 1`
`=(x-3)^2+1 >0 forall x`
`B=x^2-2x+9y^2-6y+3`
`=(x^2-2x+1)+(9y^2-6y+1)+1`
`=(x-1)^2+(3y-1)^2+1 > 0 forall x,y`.
Lời giải:
\(A=x^2-3x+3=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\geq 0+\frac{3}{4}\Leftrightarrow A\geq \frac{3}{4}>0\)
Do đó ta có đpcm.
\(B=x^2-2x+9y^2-y+3\)
\(\Leftrightarrow B=(x^2-2x+1)+(9y^2-y+\frac{1}{36})+\frac{71}{36}\)
\(\Leftrightarrow B=(x-1)^2+\left(3y-\frac{1}{6}\right)^2+\frac{71}{36}\geq 0+0+\frac{71}{36}\)
\(\Leftrightarrow B\geq \frac{71}{36}>0\) (đpcm)
a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)
\(=3x^2-4x-26-4x^2+16\)
\(=-x^2-4x-10\)