Cho 2 số sau: \(x=\dfrac{2011^3-1}{2011^2+2012}\) và \(y=\dfrac{2012^3+1}{2012^2-2011}\). Tính x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn kiểm tra lại đề, \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\) hay \(f\left(x\right)=\dfrac{x^3}{1-3x+3x^2}\)
Lời giải:
Ta có:
\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}=2012\)
\(\Leftrightarrow \left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+\left(\frac{x-3}{2010}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)
\(\Leftrightarrow \frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow (x-2013)\left(\frac{1}{2012}+\frac{1}{2011}+...+1\right)=0\)
Dễ thấy \(\frac{1}{2012}+\frac{1}{2011}+...+1\neq 0\Rightarrow x-2013=0\)
\(\Leftrightarrow x=2013\)
Vậy PT có nghiệm \(x=2013\)
\(\dfrac{x-3}{2011}+\dfrac{x-2}{2012}=\dfrac{x-2012}{2}+\dfrac{x-2011}{3}\)
\(\Leftrightarrow\dfrac{x-3}{2011}-1+\dfrac{x-2}{2012}-1=\dfrac{x-2012}{2}-1+\dfrac{x-2011}{3}-1\)
\(\Leftrightarrow\dfrac{x-2014}{2011}+\dfrac{x-2014}{2012}=\dfrac{x-2014}{2}+\dfrac{x-2014}{3}\)
\(\Leftrightarrow\dfrac{x-2014}{2011}+\dfrac{x-2014}{2012}-\dfrac{x-2014}{2}-\dfrac{x-2014}{3}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
Vậy x = 2014.
Lời giải:
Áp dụng BĐT Cô-si ngược dấu:
\(\sqrt{x-2010}=\frac{1}{2}\sqrt{4(x-2010)}\leq \frac{4+(x-2010)}{4}\)
\(\Rightarrow \sqrt{x-2010}-1\leq \frac{4+(x-2010)}{4}-1=\frac{x-2010}{4}\)
\(\Rightarrow \frac{\sqrt{x-2010}-1}{x-2010}\leq \frac{1}{4}\)
Hoàn toàn tương tự với những phân thức còn lại:
\(\Rightarrow \frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}+\frac{\sqrt{z-2012}-1}{z-2012}\leq \frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} x-2010=4\\ y-2011=4\\ z-2012=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2014\\ y=2015\\ z=2016\end{matrix}\right.\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ge2011\\y\ge2012\\z\ge2013\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-2011}\ge0\\b=\sqrt{y-2012}\ge0\\c=\sqrt{z-2013}\ge0\end{matrix}\right.\) ta có :
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}+\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}=0\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow a=b=c=2\Leftrightarrow\left\{{}\begin{matrix}x=2015\\y=2016\\z=2017\end{matrix}\right.\)
\(x= \dfrac{2011^3-1}{2011^2+2012} = \dfrac{(2011-1)(2011^2+2011+1)}{2011^2 + 2011 + 1} = 2010\)
\(y = \dfrac{2012^3+1}{2012^2-2011} = \dfrac{(2012+1)(2012^2-2012+1)}{2012^2-2012 + 1} = 2013\)
Suy ra:
x + y = 2010 + 2013 = 4023