Tìm n là số tự nhiên lớn nhất có hai chữ số để phân số :
\(\frac{n-3}{n+4}\)rút gọn được
Các bạn giúp mình với, mình đang cần gấp. Giải chi tiết hộ mình .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi $d=ƯCLN(18n+3, 21n+7)$
$\Rightarrow 18n+3=3(6n+1)$ và $21n+7=7(3n+1)$ cùng chia hết cho $d$
Để phân số rút gọn được, tức là $3(6n+1)$ và $7(3n+1)$ phải cùng chia hết cho 1 số $d>1$
Mà $(3,7)=1$ nên $6n+1\vdots d$ và $3n+1\vdots d$
$\Rightarrow 2(3n+1)-(6n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(18n+3, 21n+7)=1$, tức là không tồn tại $n$ tự nhiên để phân số có thể rút gọn.
+ Nếu n chia hết cho 3 thì tích chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3
+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3
=> tích chia hết cho 3 với mọi n
bạn gap thi mk lam;
23+n/40+n =3/4
92+4n=120+3n
n = 120-92 =28
Theo đề ta có: \(\frac{23+n}{40+n}=\frac{3}{4}\Rightarrow\left(23+n\right)4=\left(40+n\right)3\Rightarrow92+n4=120+n3\Rightarrow n=28\)
a) Đặt A=8n+1934n+3 =2.(4n+3)+1874n+3 =2+1874n+3
⇒187÷4n+3⇒4n+3∈Ư(187)={17;11;187}
+ 4n + 3 = 11 => n = 2
+ 4n +3 = 187 => n = 46
+ 4n + 3 = 17 => 4n = 14 ( loại )
Vậy n = 2 và 46
B) Gọi ƯCLN ( 8n + 193; 4n + 3) = d
=> ( 8n + 193; 4n + 3 ) : d => (8n + 193) - 2.(4n+3)
=> ( 8n+193 ) - ( 8n + 6 ) : d
=> 187 : d mà A là phân số tối giản => A
c) n= 156 =>A = 77/19
N = 165 => A = 88/39
n = 167 => A = 139/61