cho a,b là 2 số tự nhiên lẻ liên tiếp. CMR:(a-1).(b-1) chia hết cho 192
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Bảo Bình Đáng Yêu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo link này nhé!
Câu hỏi của Bảo Bình Đáng Yêu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo link này nhé!
a,b lẻ nên suy ra: (a-1)(b-1) chia hết cho 4.
Ta đặt: a=(2k-1)2;b=(2k+1)2.
=>(m-1)=4k(k-1) (k thuộc Z)
(n-1)=4k(k+1).
=>(m-1)(n-1)=16k2(k-1)(k+1)
Mà k(k-1)(k+1) chia hết cho3 (3 số nguyên liên tiếp).
Do k(k-1)và k(k+1) chia hết cho 2
nên suy ra: k2(k+1)(k-1) chia hết cho 12.
=>(a-1)(b-1)=16k2(k+1)(k-1) chia hết cho 192 khi m,n là SCP lẻ liên tiếp.
a = (2m - 1)2 = 4m2 - 4m + 1
b = (2m + 1)^2 = 4m2 + 4m + 1
=> A = (a - 1)(b - 1) = 4m(m -1).4m(m +1)
Vì m(m -1) và m(m+1) đều chia hết cho 2 => A chia hết cho 4.2.4.2 = 64
Mà A chứa m(m-1)(m+1) là tích 3 số nguyên liên tiếp chia hết cho 3
Mà 3 và 64 nguyên tố cùng nhau => A chia hết cho 64.3 = 192
Câu hỏi của Bảo Bình Đáng Yêu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo link này nhé!
a,b lẻ nên suy ra: (a-1)(b-1) chia hết cho 4.
Ta đặt: a=(2k-1)2;b=(2k+1)2.
=>(m-1)=4k(k-1) (k thuộc Z)
(n-1)=4k(k+1).
=>(m-1)(n-1)=16k2(k-1)(k+1)
Mà k(k-1)(k+1) chia hết cho3 (3 số nguyên liên tiếp).
Do k(k-1)và k(k+1) chia hết cho 2
nên suy ra: k2(k+1)(k-1) chia hết cho 12.
=>(a-1)(b-1)=16k2(k+1)(k-1) chia hết cho 192 khi m,n là SCP lẻ liên tiếp.
ta chứng minh bài toán phụ a chia 8 dư 1
đặt a =x^2(x thuộc N)
vì a là số chính phương lẻ nên x lẻ
đặt x=2k+1
ta có: x^2=(2k+1)^2=(2k)^2+2.2k+1=4k^2+4k+1=4(k+k^2)+1
vì k và k^2 là 2 số cùng tính chẵn lẻ suy ra 4(k+k^2) chia hết cho 8 suy ra 4(k+k^2)+1 chia hết cho 8 dư 1(đpcm)
Theo đề bài suy ra a chia 8 dư 1, b chia 8 dư 1 suy ra a-1 chia hết cho 8, b-1 chia hết cho 8
suy ra (a-1)(b-1) chia hết cho 64
vì 1 số chính phương chia 3 dư 1 suy ra a-1, b-1 chia hết cho 3
suy ra (a-1)(b-1) chia hết cho 3
vì (3,64)=1 suy ra (a-1)(b-1) chia hết cho 192(đpcm)
vậy (a-1)(b-1) chia hết cho 192
Ta có:
a = (2m - 1)2 = 4m2 - 4m + 1
b = (2m + 1)2 = 4m2 + 4m + 1
=> A = (a - 1)(b - 1) = 4m(m -1).4m(m +1)
Vì m(m -1) và m(m+1) đều chia hết cho 2 => A chia hết cho 4.2.4.2 = 64
Mà : A chứa m(m-1)(m+1) là tích 3 số nguyên liên tiếp chia hết cho 3
Vì 3 và 64 nguyên tố cùng nhau => A chia hết cho 64.3 = 192
đề sau rồi
Câu hỏi của Bảo Bình Đáng Yêu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo link này nhé!