CHo a,b,c là ba cạnh của 1 tam giác. Chứng minh rằng \(a<\frac{a+b+c}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a, b,c là độ dài ba cạnh của một tam giác
=> \(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}}\)(bđt)
=>\(\frac{a}{b}\)\(< \frac{a+m}{b+m}\)\(\left(\frac{a}{b}< 1;a,b,m>0\right)\)
=> \(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\)
làm tương tự 2 cái còn lại
cộng vế đẳng thức trên ta đc :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \)\(\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
=>\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
=> đpcm
Ta có : a+b > c , b+c > a , c+a > b
Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)
Vậy ta có đpcm
Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)
\(\frac{a}{b+c}< \frac{2a}{a+b+c}\)
\(\Leftrightarrow a\left(a+b+c\right)< 2a\left(b+c\right)\)
\(\Leftrightarrow a^2+ab+ac< 2ab+2ac\)
\(\Leftrightarrow a^2< ab+ac\)
\(\Leftrightarrow a^2< a\left(b+c\right)\)
\(\Leftrightarrow a< b+c\) (luôn đúng \(\forall\) a;b;c là 3 cạnh của \(\Delta\) )
Vậy \(\frac{a}{b+c}< \frac{2a}{a+b+c}\)
Ta có:
\(\frac{a}{b+c}=\frac{2a}{2\left(b+c\right)}\)
Vì \(a< b+c\)(Bất đẳng thức tam giác)
nên \(a+b+c< 2\left(b+c\right)\)
\(\Rightarrow\frac{2a}{2\left(b+c\right)}< \frac{2a}{a+b+c}\)
Hay\(\frac{a}{b+c}< \frac{2a}{a+b+c}\)
\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(c+b\right)\left(a+c\right)}{abc}=8\)
\(\Leftrightarrow\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}=64\)
Ta có
\(\left(a+b\right)^2\ge4ab;\left(c+b\right)^2\ge4cb;\left(a+c\right)^2\ge4ac\)
\(\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}\ge64\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)=> Đó là tam giác đều
Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
\(\Rightarrow\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{c}=8\)
\(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)
\(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2+2abc=8abc\)
\(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2-6abc=0\)
\(\Rightarrow\left(ab^2-2abc+ac^2\right)+\left(a^2b-2abc+bc^2\right)+\left(a^2c-2abc+b^2c\right)=0\)
\(\Rightarrow a\left(b^2-2bc+c^2\right)+b\left(a^2-2ac+c^2\right)+c\left(a^2-2ab+b^2\right)=0\)
\(\Rightarrow a\left(b-c\right)^2+b\left(a-c\right)^2+c\left(a-b\right)^2=0\)(1)
Vì a, b, c là độ dài các cạnh của tam giác nên a, b, c > 0 (2)
Do đó \(\Rightarrow\hept{\begin{cases}a\left(b-c\right)^2\ge0\\b\left(a-c\right)^2\ge0\\c\left(a-b\right)^2\ge0\end{cases}}\)(3)
Từ (1), (2), (3) \(\Rightarrow\left(b-c\right)^2=\left(a-c\right)^2=\left(a-b\right)^2=0\)
\(\Rightarrow\left(b-c\right)=\left(a-c\right)=\left(a-b\right)=0\)
\(\Rightarrow a=b=c\)
Vậy a, b, c là độ dài ba cạnh của một tam giác đều
=>2a<a+b+c
=>2a-a<a+b+c-a
=>a<b+c (BĐT đúng,đây là BĐT tam giác)
Vậy ..................