Cho biểu thức \(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+n}\)
a) Chứng minh A < 2 với mọi n.
b) Tìm giá trị hửu tỉ nhỏ nhất của a sao cho A < a với mọi n.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(3n-1\right)^2-4=\left(3n-1-2\right)\left(3n-1+2\right)\)
\(=\left(3n-3\right)\left(3n+1\right)=3\left(n-1\right)\left(3n+1\right)⋮3\forall n\in N\)
b) \(A=x^2+2x+5=\left(x^2+2x+1\right)+4\)
\(=\left(x+1\right)^2+4\ge4\)
\(minA=4\Leftrightarrow x=-1\)
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
a, với n thuộc Z
Để A là một số nguyên thì 3n + 1 chia hết cho n+1
mà n + 1 chia hết n +1
=> (3n+1) - 3. (n+1) chia hết cho n+1
<=> (3n+1)-( 3n +3) chia hết cho n+1
<=> 4 chia hết cho n+1
=> n+1 thuộc Ư(4)= {+-1; +-4; +-2}
nếu ............
Ta có : A = \(\frac{1}{\frac{2\cdot3}{2}}+\frac{1}{\frac{3\cdot4}{2}}+.....+\frac{1}{\frac{n\left(n+1\right)}{2}}\)
=\(\frac{2}{3\cdot3}+\frac{2}{3\cdot4}+.....+\frac{2}{n\left(n+1\right)}=2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{n\left(n+1\right)}\right)=2\left(\frac{1}{2}-\frac{1}{n+1}\right)=1-\frac{2}{n+1}\)
=> A < 1 =>A<2 với mọi n
Câu sau mình không hiểu đề