K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

Xét 3 trường hợp \(\frac{a}{b}=1,\frac{a}{b}>1,\frac{a}{b}< 1\)

TH1: \(\frac{a}{b}=1\)

=> a = b

=> an = bn

=> ab + an = ab + bn

=> a(b + n) = b(a + n)

=> \(\frac{a}{b}=\frac{a+n}{b+n}\)

TH2: \(\frac{a}{b}>1\)

=> a > b

=> an > bn

=> ab + an > ab + bn

=> a(b + n) > b(a + n)

=> \(\frac{a}{b}>\frac{a+n}{b+n}\)

TH3: \(\frac{a}{b}< 1\)

=> a < b

=> an < bn

=> ab + an < ab + bn

=> a(b + n) < b(a + n)

=> \(\frac{a}{b}< \frac{a+n}{b+n}\)

25 tháng 8 2015

\(\frac{a}{b}=\frac{a.\left(b+n\right)}{b.\left(b+n\right)}=\frac{a.b+a.n}{b^2+b.n}\)

\(\frac{a+n}{b+n}=\frac{b.\left(a+n\right)}{b.\left(b+n\right)}=\frac{a.b+b.n}{b^2+b.n}\)

Với a=b thì:
\(\frac{a}{b}=1;\frac{a+n}{b+n}=1\Rightarrow\frac{a}{b}=\frac{a+n}{b+n}\)

 

Với a<b thì:

\(\frac{a.b+a.n}{b^2+b.n}<\frac{a.b+b.n}{b^2+b.n}\text{ hay }\frac{a}{b}<\frac{a+n}{b+n}\)

Với a>b thì:

\(\frac{a.b+a.n}{b^2+b.n}>\frac{a.b+b.n}{b^2+b.n}\text{ hay }\frac{a}{b}>\frac{a+n}{b+n}\)

1 tháng 5 2015

Xét hiệu: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{b\left(a+n\right)}{b\left(b+n\right)}-\frac{a.\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+bn-ab-an}{b\left(b+n\right)}=\frac{\left(b-a\right).n}{b\left(b+n\right)}=\frac{n}{b\left(b+n\right)}.\left(b-a\right)\)

Nếu a\(\le\) b => b - a \(\ge\) 0 => hiệu \(\frac{a+n}{b+n}-\frac{a}{b}\ge0\Rightarrow\frac{a+n}{b+n}\ge\frac{a}{b}\)

Nếu a \(\ge\) b => b - a \(\le\) 0 => hiệu \(\frac{a+n}{b+n}-\frac{a}{b}\le0\Rightarrow\frac{a+n}{b+n}\le\frac{a}{b}\)

Vậy.......

1 tháng 5 2015

 

Admin kìa                                                                       

15 tháng 9 2017

mik ko biết làm nhưng bạn có thể vào câu hỏi tương tự

11 tháng 7 2019

Ta có : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a(b+n)< b(a+n)\)

\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\)vì n > 0

Như vậy : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)

Ta lại có : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a(b+n)>b(a+n)\)

\(\Leftrightarrow ab+an>ab+bn\Leftrightarrow an>bn\Leftrightarrow a>b\)

Như vậy : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)

AH
Akai Haruma
Giáo viên
31 tháng 5 2024

Lời giải:

Xét $\frac{a}{b}-\frac{a+n}{b+n}=\frac{a(b+n)-b(a+n)}{b(b+n)}=\frac{n(a-b)}{b(b+n)}$
Nếu $a>b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}>0$

$\Rightarrow {a}{b}>\frac{a+n}{b+n}$

Nếu $a=b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}=0$

$\Rightarrow {a}{b}=\frac{a+n}{b+n}$

Nếu $a<b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}<0$

$\Rightarrow {a}{b}<\frac{a+n}{b+n}$