giải hệ phương trình sau : \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=2\\\dfrac{2}{x}+\dfrac{3}{y}=5\end{matrix}\right.\) với x, y ∈ Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\ne-1;y\ne2\\ HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y}{2-y}=-1\\\dfrac{x}{x+1}+\dfrac{2y}{2-y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0y=-2\left(vn\right)\\\dfrac{x}{x+1}+\dfrac{2y}{2-y}=2\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)
Đặt x/x+1=a
y/2-y=b
\(\Leftrightarrow\left\{{}\begin{matrix}a+2b=1\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-1\\a=2-b=2-\left(-1\right)=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3x+3\\y=y-2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
b) Áp dụng bđt Svac-xơ:
\(\dfrac{1}{x}+\dfrac{9}{y}+\dfrac{16}{z}\ge\dfrac{\left(1+3+4\right)^2}{x+y+z}\ge\dfrac{64}{4}=16>9\)
=> hpt vô nghiệm
c) Ở đây x,y,z là các số thực dương
Áp dụng cosi: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=3xyz\)
Dấu = xảy ra khi \(x=y=z=\dfrac{3}{3}=1\)
Lời giải:
$x,y,z>0$ thì $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ mới xác định.
Áp dụng BĐT AM-GM:
$(x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})\geq 3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9$
Dấu "=" xảy ra khi $x=y=z$. Thay vào pt $(2)$:
$x^3=x^2+x+2$
$\Leftrightarrow x^3-x^2-x-2=0$
$\Leftrightarrow x^2(x-2)+x(x-2)+(x-2)=0$
$\Leftrightarrow (x^2+x+1)(x-2)=0$
Dễ thấy $x^2+x+1>0$ với mọi $x>0$ nên $x-2=0$
$\Rightarrow x=2$
Vậy hpt có nghiệm $(x,y,z)=(2,2,2)$
ĐKXĐ : \(xy\ne0\)
- Đặt \(x+\dfrac{1}{y}=t\)
\(\Rightarrow t^2=x^2+\dfrac{1}{y^2}+\dfrac{2x}{y}\)
\(\Rightarrow x^2+\dfrac{1}{y^2}=t^2-\dfrac{2x}{y}\)
Lại có từ PT ( II ) : \(\dfrac{x}{y}=3-\left(x+\dfrac{1}{y}\right)=3-t\)
\(\Rightarrow\dfrac{2x}{y}=6-2t\)
- Thay vào PT ( I ) ta được : \(t^2-\left(6-2t\right)+3-t=3\)
\(\Rightarrow t^2-6+2t+3-t-3=0\)
\(\Rightarrow t^2+t-6=0\)
\(\Rightarrow\left[{}\begin{matrix}t=2\\t=-3\end{matrix}\right.\)
TH1 : t = 2 .
=> \(x=y\)
Thay lại vào PT ( II ) ta được : \(x+\dfrac{1}{x}+1=3\)
\(\Rightarrow x^2+1-2x=0\)
\(\Rightarrow x=y=1\) ( TM )
TH2 : t = -3 .
=> \(x=6y\)
Thay lại vào PT ( II ) ta được : \(6y+\dfrac{1}{y}+6-3=0\)
\(\Rightarrow6y^2+1+3y=0\)
Vô nghiệm .
Vậy hệ phương trình có tập nghiệm \(S=\left\{\left(1;1\right)\right\}\)
a.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\5\sqrt{x-2}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\\sqrt{x-2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y-3}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)
b.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\ne-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{4x}{x+1}-\dfrac{10}{y+4}=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{19x}{x+1}=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+1}=\dfrac{28}{19}\\\dfrac{1}{y+4}=-\dfrac{4}{19}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}19x=28x+28\\4y+16=-19\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{28}{9}\\y=-\dfrac{35}{4}\end{matrix}\right.\)
a) Ta có: \(\left\{{}\begin{matrix}\sqrt{2}x-y=3\\x+\sqrt{2}y=\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2}x-y=3\\\sqrt{2}x+2y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=1\\x+\sqrt{2}y=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\sqrt{2}-\sqrt{2}y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\sqrt{2}-\sqrt{2}\cdot\dfrac{-1}{3}=\dfrac{4\sqrt{2}}{3}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{4\sqrt{2}}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}\dfrac{x}{2}-2y=\dfrac{3}{4}\\2x+\dfrac{y}{3}=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-8y=3\\2x+\dfrac{1}{3}y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{25}{3}y=\dfrac{10}{3}\\2x-8y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{5}\\2x=3+8y=3+8\cdot\dfrac{-2}{5}=-\dfrac{1}{5}\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=-\dfrac{1}{10}\\y=-\dfrac{2}{5}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{1}{10}\\y=-\dfrac{2}{5}\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}\dfrac{2x-3y}{4}-\dfrac{x+y-1}{5}=2x-y-1\\\dfrac{x+y-1}{3}+\dfrac{4x-y-2}{4}=\dfrac{2x-y-3}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5\left(2x-3y\right)}{20}-\dfrac{4\left(x+y-1\right)}{20}=\dfrac{20\left(2x-y-1\right)}{20}\\\dfrac{4\left(x+y-1\right)}{12}+\dfrac{3\left(4x-y-2\right)}{12}=\dfrac{2\left(2x-y-3\right)}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10x-15y-4x-4y+4=40x-20y-20\\4x+4y-4+12x-3y-6=4x-2y-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-19y+4-40x+20y+20=0\\16x+y-10-4x+2y+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-34x+y=-24\\12x+3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-102x+3y=-72\\12x+3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-114x=-76\\12x+3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\12\cdot\dfrac{2}{3}+3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\3y=4-8=-4\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại
Với pt sau:
Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm
Với \(x;y;z\ne0\)
Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3
Do đó:
\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)
a: =>xy-2x+2y-4=xy+y và 5xy+10x+y+2=5xy-10x-2y+4
=>-2x+y=4 và 20x+3y=2
=>x=-5/13; y=42/13
b: =>4x+2|y|=8 và 4x-3y=1
=>2|y|-3y=7 và 4x-3y=1
TH1: y>=0
=>2y-3y=7 và 4x-3y=1
=>-y=7 và 4x-3y=1
=>y=-7(loại)
TH2: y<0
=>-2y-3y=7 và 4x-3y=1
=>y=-7/5; 4x=1+3y=1-21/5=-16/5
=>x=-4/5; y=-7/5
\(ĐK:x,y\ne0\\ HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=4\\\dfrac{2}{x}+\dfrac{3}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+1=2\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\left(tm\right)\)