Chứng tỏ rằng a = 2 + 2 mũ 2 + 2 mũ 3 ... + 2 mũ 100 chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+2^3+...+2^{100}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(A=6+2^2.6+...+2^{98}.6\)
\(A=6\left(1+2^2+...+2^{98}\right)\)
Có : \(6⋮6\)
\(\Rightarrow A=6\left(1+2^2+...+2^{98}\right)⋮6\)
\(\Rightarrow A⋮6\)
suuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
a = 2 + 22 +23+........................+ 2100 chia hết cho 62
a = [ 2 + 22 +23+.24+25 ] +[ 26 +27 +28+29+210 ] + ...........+ [ 296 + 297 +298 +299 + 2100 ]
a= 62 + [ 210 . 62 ] + [ 215 . 62 ] + [ 220. 62 ] + ......................+ [ 2100 . 62 ]
a= 62 . [ 210 + 215 + 220 +......................+ 2100 ]
Mà 62 chia hết cho 62 => 62 . [ 210 + 215 + 220 +......................+ 2100 ] hay a chia hết cho 62
a = (2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+.....+(2^96+2^97+2^98+2^99+2^100)
= 62+2^5.(2+2^2+2^3+2^4+2^5)+......+2^95.(2+2^2+2^3+2^4+2^5)
= 62+2^5.62+....+2^95.62
= 62.(1+2^5+....+2^95) chia hết cho 62
=> ĐPCM
k mk nha
Ta có: A = 2 + 22 + 23 + 24 + ... + 299 + 2100
A = (2 + 22) + (23 + 24) + ... + (299 + 2100)
A = 6 + 22(2 + 22) + .... + 298(2 + 22)
A = 6 + 22.6 + ... + 298.6
A = 6.(1 + 22 + ... + 298) ⋮6
Em lớp 5, sai thì bỏ qua cho em nhé ^^!
\(A=2+2^2+2^3+...+2^{100}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(A=6+2^2.6+...+2^{98}.6\)
\(A=6\left(1+2^2+...+2^{98}\right)\)
Mà \(A=6\left(1+2^2+...+2^{98}\right)⋮6\)
\(\Rightarrow A⋮6\)
Đặt A= 21+ 22+ 23+...+2100
=> 2A= 22+ 23+ 24+...+ 2100
=> 2A- A= (22+ 23+ 24+...+ 2101)- (21+ 22+ 23+...+2100)
=> A= 2101- 21
Gọi C là giá trị của biểu thức trên
a) CMR : C chia hết cho 31
\(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(C=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{19}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(C=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(C=2.31+2^6.31+...+2^{96}.31\)
\(C=31\left(2+2^6+2^{10}+...+2^{96}\right)⋮31\)(đpcm)
b) CMR : C chia hết cho 5
\(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{97}+2^{99}\right)+\left(2^{98}+2^{100}\right)\)
\(=2\left(1+2^2\right)+2^2\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)+2^{98}\left(1+2^2\right)\)
=\(2.5+2^2.5+...+2^{97}.5+2^{98}.5\)
\(=5\left(2+2^2+...+2^{97}+2^{98}\right)⋮5\)(đpcm)
Vậy 2 + 2^2 + 2^3 + ...+ 2^98 + 2^99 + 2^100 vừa chia hết cho 5 vừa chia hết cho 31
\(A=2+2^2+2^3+.......+2^{100},\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{99}+2^{100}\right)\)
\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+.....+2^{98}\left(2+2^2\right)\)
\(A=6+2^2.6+....+2^{98}.6\)
\(A=6\left(1+2^2+.......+2^{98}\right)\)
\(A=6\left(1+2^2+........+2^{98}\right)\text{⋮6}\)