K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2016

Ta có: 35=1(mod 17)

=>3535=135(mod 17)

=>3535=1 (mod 17)

Ta có: 52=1(mod 17)

=>5252 = 152(mod 17)

=>5252=1(mod 17)

=>3535+5252-2=1+1-2 (mod 17)

=>A=0 (mod 17)

=>A chia hết cho 17 (đpcm)

13 tháng 3 2016

Ta có: 3= 1 (mod 5)

=>34n = 1n (mod 5)

=>34n.3 = 1.3 (mod 5)

=>34n+1 = 3 (mod 5)

=>34n+1+2 = 3+2 (mod 5)

=>P = 0 (mod 5)

Vậy P chia hết cho 5(đpcm)

 "=" là đồng dư nha

13 tháng 3 2016

ta có 34n+1+2=34n x 3 + 2= ...1 x 3 +2=...3+2=...5 chia hết cho 5

vậy p chia hết cho 5(đpcm)

19 tháng 7 2017

Ta có công thức : \(a^{2k+1}+b^{2k+1}⋮a+b\forall a;b\in Z;k\in N\)

Áp dụng ta đc :

a )\(2^{70}+3^{70}=\left(2^2\right)^{35}+\left(3^2\right)^{35}=4^{35}+9^{35}⋮4+9=13\) (đpcm)

b)\(3^{105}+4^{105}=\left(3^5\right)^{35}+\left(4^5\right)^{35}=243^{35}+1024^{35}⋮243+1024=1267=181.7⋮181\)(đpcm)

NV
8 tháng 1 2024

Đặt \(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)

Do \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)

\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)

\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)

Do \(19.6^n⋮19\Rightarrow A⋮19\)

8 tháng 1 2024

A = 7.52n + 12.6n

A = 7.(52)n + 12.6n

A = 7.25n + 12.6n

25  \(\equiv\) 6 (mod 19)

25n \(\equiv\) 6n (mod 19)

7    \(\equiv\) - 12 (mod 19)

⇒ 7.25n \(\equiv\) -12.6n (mod 19)

⇒ 7.25n -( -12.6n) ⋮ 19

⇒ 7.25n + 12.6n   ⋮ 19

 

 

25 tháng 9 2016

bạn giải được chưa

24 tháng 1 2018

bài này vượt quá giới hạn của ta rồi

24 tháng 1 2018

Câu 1 cách làm:

Cậu có thể đưa ra chữ số tận cùng của mỗi lũy thừa, ví dụ như thế này để tính

2^(4k+1) có tận cùng là 2 nên 2^2009 có tận cùng là 2(2009=4.502+1)

7 tháng 1 2018

Ai làm hộ mk ik mk mơn nhìu 😘😘

7 tháng 1 2018

^ la gi