K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

Pt hoành độ giao điểm của (P1) và (P2) là:

\(2x^2+2x+3=x^2+6x\)

\(\Rightarrow x^2-4x+3=0\)

=> (x - 1).(x - 3) = 0

\(\Rightarrow\left[{}\begin{matrix}x_1=1\\x_2=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y_1=7\\y_2=27\end{matrix}\right.\)

Vậy 2 parabol này cắt nhau tại 2 điểm (1;7);(3;27)

19 tháng 2 2021

- Xét phương trình hoành độ giao điểm : \(x^2=2x+3\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow x^2-2x+1-4=\left(x-1\right)^2-2^2=0\)

\(\Leftrightarrow\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy P giao với đường thẳng tại 2 điểm trong mptđ .

Phương trình hoành độ giao điểm của parabol \(y=x^2\) và đường thẳng y=2x+3 là: 

\(x^2=2x+3\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow x^2-3x+x-3=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy: Số giao điểm của parabol \(y=x^2\) và đường thẳng y=2x+3 là 2 giao điểm

28 tháng 1 2018

Tìm tọa độ trung điểm của AB là C (a;b) ạ 

29 tháng 10 2021

PTHDGĐ là:

\(2x+m=-x^2-2x-3\)

\(\Leftrightarrow x^2+4x+m+3=0\)

\(\text{Δ}=4^2-4\cdot1\cdot\left(m+3\right)\)

\(=16-4m-12\)

=-4m+4

Để (P) cắt (d) tại đúng một điểm thì -4m+4=0

hay m=1

11 tháng 9 2019

Phương trình hoành độ giao điểm:  x2 – 2x – 1 =  2x + 4

  ⇔ x 2 - 2 x - 1 - 2 x - 4 = 0 ⇔ x 2 - 4 x - 5 = 0 ⇔ [ x = - 1 ⇒ y = 2 x = 5 ⇔ y = 14

Vậy tọa độ giao điểm của hai đồ thị là (-1; 2) và ( 5; 14).

a: Khi m=3 thì (d); y=2x+3

Phương trình hoành độ giao điểm là:

x2-2x-3=0

=>(x-3)(x+1)=0

=>x=3 hoặc x=-1

Khi x=3 thì y=9

Khi x=-1thì y=1

b: PTHDGĐ là:

\(x^2-2x-m=0\)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(-m\right)=4m+4\)

Để (d) tiếp xúc với (P) thì 4m+4=0

=>m=-1

NV
6 tháng 4 2022

Phương trình hoành độ giao điểm (P) và (d):

\(2x^2=-3x+5\Leftrightarrow2x^2+3x-5=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=2\\x=-\dfrac{5}{2}\Rightarrow y=\dfrac{25}{2}\end{matrix}\right.\)

Vậy (d) và (P) cắt nhau tại 2 điểm có tọa độ lần lượt là: \(\left(1;2\right);\left(-\dfrac{5}{2};\dfrac{25}{2}\right)\)

b: Thay m=2 vào (d), ta được:

y=2x-2+1=2x-1

Phương trình hoành độ giao điểm là:

\(x^2=2x-1\)

=>\(x^2-2x+1=0\)

=>(x-1)^2=0

=>x-1=0

=>x=1

Thay x=1 vào (P), ta được:

\(y=1^2=1\)

Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)

b: Phương trình hoành độ giao điểm là:

\(x^2=2x-m+1\)

=>\(x^2-2x+m-1=0\)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)

=4-4m+4

=-4m+8

Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0

=>-4m+8>0

=>-4m>-8

=>m<2

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)

y1,y2 thỏa mãn gì vậy bạn?