K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2023

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: ta có: ΔABM=ΔDCM

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC
c: Xét ΔMEB vuông tại E và ΔMFC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔMEB=ΔMFC

=>ME=MF

mà M nằm giữa E và F

nên M là trung điểm của EF

a: Xét ΔABM và ΔDCM có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó:ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

a: Xét ΔABM và ΔDCM có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔABM=ΔDCM
b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

=>AC=BD

c: ABDC là hình bình hành

=>AB//DC

21 tháng 1 2022

a. Xét △ABM và △DCM:

\(AM=MD\left(gt\right)\)

\(\hat{AMB}=\hat{DMC}\) (đối đỉnh)

\(BM=MC\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

 

b. Từ a. => \(\hat{MCD}=\hat{MBA}\) (2 góc tương ứng). Mà hai góc này ở vị trí so le trong

\(\Rightarrow CD\text{ // }AB\left(a\right)\)

 

c. Xét △CIK và △AIB:

\(AI=IC\left(gt\right)\)

\(\hat{AIB}=\hat{CIK}\) (đối đỉnh)

\(BI=IK\left(gt\right)\)

\(\Rightarrow\Delta CIK=\Delta AIB\left(c.g.c\right)\Rightarrow\hat{ICK}=\hat{IAB}\). Mà hai góc ở vị trí so le trong

\(\Rightarrow AB\text{ // }CK\left(b\right)\)

Từ (a) và (b), theo tiên đề Ơ-clit \(\Rightarrow AB\text{ // }DK\)

Vậy: D, C, K thẳng hàng (đpcm).

21 tháng 1 2022

a) Xét tam giác ABM và tam giác DCM:

BM = CM (M là trung điểm BC).

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh).

MA = MD (cmt).

\(\Rightarrow\) Tam giác ABM = Tam giác DCM (c - g - c).

b) Ta có: \(\widehat{BAM}=\widehat{CDM}\) (Tam giác ABM = Tam giác DCM).

Mà 2 góc này ở vị trí so le trong.

\(\Rightarrow\) CD // AB (dhnb).

c) Xét tứ giác AKCB có:

I là trung điểm AC (gt).

I là trung điểm BK (IB = IK).

\(\Rightarrow\) Tứ giác AKCB là hình bình hành (dhnb).

\(\Rightarrow\) CK // AB (Tính chất hình bình hành).

Mà CD // AB (cmt).

\(\Rightarrow\) D, C, K thẳng hàng.

5 tháng 12 2018

a)

Do M là trung điểm của BC 

Suy ra:BM=CM

Do AMB và CMD là 2 góc đối đỉnh

Suy ra:AMB=CMD

Xét tam giác AMB và tam giác DMC có:

MA= MDC( gt), góc AMB= góc CMD( cmt), BM= CM ( cmt)

Suy ra: tam giác AMB= tam giác DMC( c. g. c)( đpcm).

b)

xét tam giác ACM và tam giác BCD có:

MA= MD(gt), góc AMC= góc BMD( đối đỉnh), BM= CM( clm câu a)

Suy ra: tam giác AMC= tam giác DMB( c. g.c)

Suy ra: ACM= DBM(2góc tương ứng)

Mà đây là 2 góc so le trong

Suy ra: AC // BD(đpcm)

C)

Do AH vuông góc với BM,  DK vuông góc với CM

Mà B, C, M là 3 điểm thẳng hàng

Suy ra AH // DK

Suy ra: HAM= KDM(2 góc sole trong)

Xét tam giác HAM và tam giác KDM có:

HAM= KDM(cmt), MA=MD (gt),AMH= KMD(đối đỉnh)

Suy ra: tam giác HAM = tam giác KDM(g.c.g)

Suy ra:HM=KM(2 cạnh tương ứng)

Suy ra M là trung điểm của HK(đpcm)

7 tháng 1 2021

undefined 

a) Xét \(\Delta ABM\)\(\Delta DCM\) có:

AM = DM (gt)

BM = CM (M là trung điểm BC)

\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

\(\Rightarrow\Delta ABM=\Delta DCM\) (c-g-c)

b) Do \(\Delta ABM=\Delta DCM\) (cmt)

\(\Rightarrow AB=CD\) (hai cạnh tương ứng) và \(\widehat{ABM}=\widehat{DCM}\) (hai góc tương ứng)

\(\Rightarrow\widehat{ABC}=\widehat{DCB}\)

Xét \(\Delta ABC\)\(\Delta DCB\) có:

AB = CD (cmt)

\(\widehat{ABC}=\widehat{DCB}\) (cmt)

BC là cạnh chung

\(\Rightarrow\Delta ABC=\Delta DCB\) (c-g-c)

\(\Rightarrow\widehat{BAC}=\widehat{BDC}\) (hai góc tương ứng)

\(\widehat{BAC}=90^0\)

\(\Rightarrow\widehat{BDC}=90^0\)

Hay \(DB\perp DC\)

8 tháng 1 2021

cam ơn nhé