K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: cắt DC tại G, cắt CB tại F

a: Xét ΔDAE và ΔBFE có

góc DEA=góc BEF
góc EAD=góc EFB

=>ΔDAE đồng dạng vơi ΔBFE
c: 

ΔDAE đồng dạng với ΔBFE

=>AE/FE=DE/BE=DA/BF

ΔDEG đồng dạng với ΔBEA

=>AE/EG=BE/DE

=>EG/AE=AE/FE
=>AE^2=EG*EF

29 tháng 3 2023

thanks

23 tháng 3 2020

a/AB//DG nên \(\frac{AE}{AG}=\frac{BE}{BD}\left(1\right)\)

AD//BK nên \(\frac{AE}{AK}=\frac{DE}{DB}\left(2\right)\)

Cộng (1) và (2) vế theo vế có: \(AE\left(\frac{1}{AG}+\frac{1}{AK}\right)=\frac{BE}{DB}+\frac{DE}{DB}\)

\(\Leftrightarrow\frac{1}{AG}+\frac{1}{AK}=\frac{1}{AE}\)

b/AD//CK nên \(\Delta ADG\sim\Delta KCG\left(g-g\right)\Rightarrow\frac{S_{KCG}}{S_{ADG}}=\left(\frac{GC}{GD}\right)^2=\frac{1}{4}\)

Vậy \(S_{ABCD}=S_{ADG}+S_{ABCG}=4S_{KCG}+S_{ABCG}=3S_{KCG}+S_{ABK}\left(1\right)\)

\(\frac{GC}{CD}=\frac{1}{3}=\frac{GC}{AB}\)

GC//AB nên \(\Delta KCG\sim\Delta KBA\Rightarrow\frac{S_{KCG}}{S_{KBA}}=\left(\frac{GC}{AB}\right)^2=\frac{1}{9}\Rightarrow S_{KBA}=9S_{KCG}\)

Thay vào (1) đc \(S_{ABCD}=3S_{KCG}+9S_{KCG}=12S_{KCG}\)

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

a) Vì \(ABCD\) là hình bình hành nên \(AB//CD;AD//BC\)

\( \Rightarrow AB//DG;AB//CG;BK//AD;KC//AD\)

Xét tam giác \(DEG\) có \(AB//DG\), theo hệ quả của định lí Thales ta có:

\(\frac{{AE}}{{EG}} = \frac{{EB}}{{ED}}\) (1)

Xét tam giác \(ADE\) có \(BK//AD\), theo hệ quả của định lí Thales ta có:

\(\frac{{EK}}{{AE}} = \frac{{EB}}{{ED}}\) (2)

Từ (1) và (2) suy ra, \(\frac{{AE}}{{EG}} = \frac{{EK}}{{AE}} \Rightarrow A{E^2} = EG.EK\) (điều phải chứng minh).

b) Xét tam giác \(AED\) có:

\(AD//BK \Rightarrow \frac{{AE}}{{AK}} = \frac{{DE}}{{DB}}\)(3)

Xét tam giác \(AEB\) có

\(AB//BK \Rightarrow \frac{{AE}}{{AG}} = \frac{{BE}}{{BD}}\) (4)

Từ (3) và (4) ta được:

\(\frac{{AE}}{{AK}} + \frac{{AE}}{{AG}} = \frac{{DE}}{{BD}} + \frac{{BE}}{{BD}} = \frac{{BD}}{{BD}} = 1\)

Ta có: \(\frac{{AE}}{{AK}} + \frac{{AE}}{{AG}} = 1 \Rightarrow \frac{1}{{AE}} = \frac{1}{{AK}} + \frac{1}{{AG}}\) (chia cả hai vế cho \(AE\)) (điều phải chứng minh).

7 tháng 3 2022

undefined

7 tháng 3 2022

cop nhớ ghi tham khảo

27 tháng 5 2022

△AOE và △BOG có:

\(AO=BO\) (O là tâm hình vuông ABCD).

\(AE=BG\)

\(\widehat{OAE}=\widehat{OBG}=45^0\)

\(\Rightarrow\)△AOE=△BOG (c-g-c).

\(\Rightarrow OE=OG;\widehat{AOE}=\widehat{BOG}\)

Mà \(\widehat{AOE}+\widehat{BOE}=90^0\) \(\Rightarrow\widehat{GOE}=\widehat{BOG}+\widehat{BOE}=90^0\)

\(\Rightarrow\)△OGE vuông cân tại O.