K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

a) Ta có: tứ giác AMDN là hình chữ nhật vì có 3 góc vuông ( A=M=N=90 độ)

Nên AD=MN (hai đường chéo của hình chữ nhật).

30 tháng 11 2017

  A B C D H M N 1 1

Ta có : \(DM\perp AB\)

\(\Rightarrow\widehat{DMA}=90^o\)

             \(DN\perp AC\)

\(\Rightarrow\widehat{DNA}=90^o\)

Xét tứ giác \(MDNA\)

\(\hept{\begin{cases}\widehat{DMA}=90^o\\\widehat{DNA}=90^o\\\widehat{MAN}=90^o\end{cases}\Rightarrow MDNA}\)là \(hcn\)

\(\Rightarrow AD=MN\)

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó:ΔABD=ΔACD

b: Xét ΔADM vuông tại M và ΔADN vuông tại N có

AD chung

\(\widehat{DAM}=\widehat{DAN}\)

DO đó: ΔADM=ΔADN

Suy ra: DM=DN

hay ΔDMN cân tại D

c: Ta có: AM=AN

DM=DN

Do đó: AD là đường trung trực của MN

hay AD⊥MN

8 tháng 3 2022

cảm ơn ạ

15 tháng 5 2018

Câu a  (1,0đ) Chứng minh :ABD = ACE

Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt)  (0,25đ)  x3=(0,75đ)  

Vậy ABD = ACE(cgc)                                                    (0,25đ)  

Câu b (0,75đ)  Chứng minh đúng vuông AMD =  vuông ANE vì có AD = AE;

(do ABD =ACE)                                                             (0,5đ)

Kết luận  AMD = ANE và suy ra  AM =AN)                (0,25đ)  

Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE  (cạnh huyền - góc nhọn )(0,25đ)

 Lập luận  chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)

Từ  lập luận để (2)

Kết hợp (1)và (2) KDE đều )(0,25đ)

a: Xét ΔAMD vuông tại M và ΔAMI vuông tại M có

AM chung

MD=MI

Do đó:ΔAMD=ΔAMI

Xét ΔAND vuông tại N và ΔANK vuông tại N có

AN chung

ND=NK

Do đó: ΔAND=ΔANK

b: \(\widehat{IAK}=2\cdot\left(\widehat{DAM}+\widehat{DAN}\right)=2\cdot90^0=180^0\)

=>I,A,K thẳng hàng

c: Ta có: I,A,K thẳng hàng

mà AI=AK(=AD)

nên A là trung điểm của KI

23 tháng 2 2022

anh ơi hai tam giác trên bằng nhau theo trường hợp nào ạ

 

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

Suy ra: AD=MN

b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ

nên AMHD là tứ giác nội tiếp

=>A,M,H,D cùng thuộc 1 đường tròn (1)

Xét tứ giác AMDN có góc AMD+góc AND=180 độ

nên AMDN là tứ giác nội tiếp

=>A,M,D,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn

=>AMHN là tứ giác nội tiếp

=>góc AHM=90 độ

15 tháng 5 2018

Câu a  (1,0đ) Chứng minh :ABD = ACE

Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt)  (0,25đ)  x3=(0,75đ)  

Vậy ABD = ACE(cgc)                                                    (0,25đ)  

Câu b (0,75đ)  Chứng minh đúng vuông AMD =  vuông ANE vì có AD = AE;

(do ABD =ACE)                                                             (0,5đ)

Kết luận  AMD = ANE và suy ra  AM =AN)                (0,25đ)  

Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE  (cạnh huyền - góc nhọn )(0,25đ)

 Lập luận  chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)

Từ  lập luận để (2)

Kết hợp (1)và (2) KDE đều )(0,25đ)

30 tháng 11 2017

làm được chưa bạn

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

Suy ra: AD=MN

b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ

nên AMHD là tứ giác nội tiếp

=>A,M,H,D cùng thuộc 1 đường tròn (1)

Xét tứ giác AMDN có góc AMD+góc AND=180 độ

nên AMDN là tứ giác nội tiếp

=>A,M,D,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn

=>AMHN là tứ giác nội tiếp

=>góc AHM=90 độ