K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2021

a: Xét ΔAMC và ΔDMB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)

MC=MB

Do đó: ΔAMC=ΔDMB

b: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

19 tháng 11 2016

1.

Xét tam giác AMB và tam giác NMC có:

AM = NM (gt)

AMB = NMC (2 góc đối đỉnh)

MB = MC (M là trung điểm của BC)

=> Tam giác AMB = Tam giác NMC (c.g.c)

Xét tam giác AMC và tam giác NMB có:

AM = NM (gt)

AMC = NMB (2 góc đối đỉnh)

MC = MB (M là trung điểm của BC)

=> Tam giác AMC = Tam giác NMB (c.g.c)

2.

Xét tam giác AME và tam giác BMC có:

AM = BM (M là trung điểm của AB)

AME = BMC (2 góc đối đỉnh)

ME = MC (gt)

=> Tam giác AME = Tam giác BMC (c.g.c)

=> AEM = BCM (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AE // BC

Xét tam giác ANF và tam giác CNB có:

AN = CN (N là trung điểm của AC)

ANF = CNB (2 góc đối đỉnh)

NF = NB (gt)

=> Tam giác ANF = Tam giác CNB (c.g.c)

=> AF = CB (2 cạnh tương ứng)

16 tháng 12 2021

a: Xét ΔAMC và ΔDMB có 

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)

MC=MB

Do đó: ΔAMC=ΔDMB

DD
28 tháng 5 2022

\(\widehat{C}=180^o-\widehat{A}-\widehat{B}=180^o-80^o-60^o=40^o\)

Có \(\widehat{C}< \widehat{B}< \widehat{A}\) suy ra \(AB< AC< BC\).

Xét tứ giác \(ABDC\) có hai đường chéo \(AD,BC\) cắt nhau tại trung điểm mỗi đường nên \(ABDC\) là hình bình hành. 

Suy ra \(AB=CD\).

\(AB+AC=AB+CD>AD\) (bất đẳng thức tam giác trong tam giác \(ACD\))

Xét tam giác \(ACD\) có hai trung tuyến \(AN,CM\) cắt nhau tại \(K\) nên \(K\) là trọng tâm tam giác \(ACD\) suy ra \(CK=\dfrac{2}{3}CM\).

Mà \(BC=2CM\) suy ra \(BC=3CK\).

30 tháng 12 2016

Mjk tra loi cau a nka

B C M K

Mjk ve hoi xau, pn thong cam nka

Vì tam giác ABM và ACM có: 

M1=M2(đối đỉnh dok pn)

AM=MK(gt)

BM=MC( gt)

=> tam giác ABM=tam giác ACM(c.g.c)

k ve dc tam giac nho nen mjk phai ghi la tam giac lun ak

30 tháng 11 2015

Xét tam giác AMC và tam giác DMB có: 

 AM =MD (gt )

 BM =MC (gt )

 goc MAC=goc MDB(so le trong)

=>Tam giac AMC=tam giac DMB(c.g.c)

 Vì góc MAD và góc MDB là hai góc so le trong tạo bởi đường thẳng AD cắt AC và BD 

=>AC //BD 

 

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Xét ΔMBA và ΔMCD có 

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)

MA=MD

Do đó: ΔMBA=ΔMCD