tìm n thuộc N biết
a) 3.n :: n + 2
b) ( 3.n+ 1 ) :: n - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(a)\)Ta có :
\(A=\frac{2.6^9-4^5.9^4}{20.6^8+2^{10}.3^8}\)
\(A=\frac{2.\left(2.3\right)^9-\left(2^2\right)^5.\left(3^2\right)^4}{\left(2^2.5\right).\left(2.3\right)^8+2^{10}.3^8}\)
\(A=\frac{2.2^9.3^9-2^{10}.3^8}{2^2.5.2^8.3^8+2^{10}.3^8}\)
\(A=\frac{2^{10}.3^9-2^{10}.3^8}{2^{10}.3^8.5+2^{10}.3^8}\)
\(A=\frac{2^{10}.3^8\left(3-1\right)}{2^{10}.3^8\left(5+1\right)}\)
\(A=\frac{2}{6}\)
\(A=\frac{1}{3}\)
Vậy \(A=\frac{1}{3}\)
Năm mới zui zẻ nhé ^^
ta co :3B=3^2+3^3+3^4+...+3^101
3B-B=(3^2+3^3+...+3^101)-(3+3^2+3^3+...+3^100)
2B=3^2+3^3+...+3^101-3-3^2-3^3-...-3^100
2B=3^101-3
ta co:2B+3+3^n
=>(3^101-3)+3=3^101
=>3^n=3^101
vay n=101
a, n+5 chia hết cho n+2
n+2 chia hết cho n+2
=> (n+5) - (n+2) chia hết cho 2
n+5-n-2 chia hết cho 2
3 chia hết cho 2
=>2 thuộc Ư(3)=...
b, 2n+1 chia hết cho n+5
n+5 chia hết cho n+5 => 2(n+5) chia hết cho n+5
Làm tương tự ý a
c, n2+3n+13 = n (n+3) +13
Mà n(n+3) chia hết cho n+3
=> 13 chia hết cho n+3
=> n+3 thuộc Ư(13)
=>...
b) n + 3 \(⋮\) n - 1 <=> (n - 1) + 4 \(⋮\) n - 1
=> 4 \(⋮\) n - 1 (vì n - 1 \(⋮\) n - 1)
=> n - 1 ∈ Ư(4) = {±1; ±2; ±4}
Lập bảng giá trị:
n - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 2 | 0 | 3 | -1 | 5 | -3 |
Vậy n ∈ {2; 0; 3; -1; 5; -3}
Lê Thị Phương Linh
Tìm n thuộc N biết
a ,n.(n+1)+1=592015
b ,1! + 2! + 3! +...n! = x2 ( x thuộc N )
a) 2n-6+7 chia het n- 3
=> 7 chia het n-3
n-3={+1-+-7}
n={-4,2,4,10} loai -4 di
b) n^2+3 chia (n+1)
n^2+n-n-1+4 chia n+1
n+ 1={+-1,+-2,+-4}
n={-5,-3,-2,0,1,3} loai -5,-3,-2, di
n={013)
1.
$3n\vdots n+2$
$\Rightarrow 3(n+2)-6\vdots n+2$
$\Rightarrow 6\vdots n+2$
$\Rightarrow n+2\in\left\{\pm 1; \pm 2; \pm 3; \pm 6\right\}$
$\Rightarrow n\in \left\{-1; -3; 0; -4; 1; -5; 4; -8\right\}$
Do $n\in\mathbb{N}\Rightarrow n\in\left\{0; 1; 4\right\}$
2.
$3n+1\vdots n-2$
$\Rightarrow 3(n-2)+7\vdots n-2$
$\Rightarrow 7\vdots n-2$
$\Rightarrow n-2\in\left\{\pm 1; \pm 7\right\}$
$\Rightarrow n\in\left\{1; 3; -5; 9\right\}$
Do $n\in\mathbb{N}$ nên $n\in\left\{1;3;9\right\}$