CHo a,b \(\ge\) và a+b \(\le\) 2 . Chứng minh:\(\frac{2+a}{1+a}+\frac{1-2b}{1+2b}\ge\frac{8}{7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$\frac{2+a}{1+a}=1+\frac{1}{1+a}$
\(\frac{1-2b}{1+2b}=-1+\frac{2}{1+2b}\)$\frac{1-2b}{1+2b}=-1+\frac{2}{1+2b}$
$\frac{1}{1+a}+\frac{2}{2+2b}=\frac{2}{2+2a}+\frac{2}{2+2b}\ge \frac{8}{4+2\left(a+b\right)}=\frac{8}{7}$
Bài 1:
\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)
Cộng theo vế 3 BĐT trên ta có:
\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2
Bài 2/
\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)
\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
\(\frac{2+a}{1+a}+\frac{1-2b}{1+2b}=\frac{\left(2+a\right)\left(1+2b\right)+\left(1-2b\right)\left(1+a\right)}{\left(1+a\right)\left(1+2b\right)}=\frac{2a+2b+3}{\left(1+a\right)\left(1+2b\right)}.\)
Ta có: \(\left(2+2a\right)\left(1+2b\right)\le\frac{\left(2+2a+1+2b\right)^2}{4}=\frac{\left(2a+2b+3\right)^2}{4}\)
\(\Rightarrow\left(1+a\right)\left(1+2b\right)\le\frac{\left(2a+2b+3\right)^2}{8}.\)
\(\Rightarrow\frac{2+a}{1+a}+\frac{1-2b}{1+2b}=\frac{2a+2b+3}{\left(1+a\right) \left(1+2b\right)}\ge\frac{2a+2b+3}{\frac{\left(2a+2b+3\right)^2}{8}}=\frac{8}{2a+2b+3}\ge\frac{8}{2.2+3}=\frac{8}{7}.\)
Định đi ngủ mà chợt nhớ lúc chiều có hứa là làm giúp chủ tus nên h phải làm =)))
\(1-\frac{a}{a+1}\ge\frac{2b}{b+1}+\frac{3c}{c+1}\Leftrightarrow\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{c}{c+1}+\frac{c}{c+1}\ge5\sqrt[5]{\frac{b^2c^3}{\left(b+1\right)^2\left(c+1\right)^3}}\)
Tương tự:
\(\frac{1}{b+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+3.\frac{c}{c+1}\ge5\sqrt[5]{\frac{abc^3}{\left(a+1\right)\left(b+1\right)\left(c+1\right)^3}}\)
\(\Leftrightarrow\frac{1}{\left(b+1\right)^2}\ge25\sqrt[5]{\frac{a^2b^2c^6}{\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^6}}\)
\(\frac{1}{c+1}\ge\frac{a}{a+1}+2.\frac{b}{b+1}+2.\frac{c}{c+1}\ge5\sqrt[5]{\frac{ab^2c^2}{\left(a+1\right)\left(b+1\right)^2\left(c+1\right)^2}}\)
\(\Leftrightarrow\frac{1}{\left(c+1\right)^3}\ge125\sqrt[5]{\frac{a^3b^6c^6}{\left(a+1\right)^3\left(b+1\right)^6\left(c+1\right)^6}}\)
Nhân vế với vế:
\(\frac{1}{\left(a+1\right)\left(b+1\right)^2\left(c+1\right)^3}\ge5^6\sqrt[5]{\frac{a^5b^{10}c^{15}}{\left(a+1\right)^5\left(b+1\right)^{10}\left(c+1\right)^{15}}}=\frac{5^6ab^2c^3}{\left(a+1\right)\left(b+1\right)^2\left(c+1\right)^3}\)
\(\Leftrightarrow ab^2c^3\le\frac{1}{5^6}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{5}\)
Me ngu số học lắm! Tui chỉ giỏi hình thôi