K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2023
 
  • dotrungminhnhat
  • 14/08/2021

Ta có: 

A = `2121 . 4343 . 6565........200199200199`

A < `2121..3232..5454............199198199198`

 A²�² < `2.4.6...2001.3.5.1992.4.6...2001.3.5.199..2.3.5....1991.2.4....1982.3.5....1991.2.4....198`

== 200.2=400200.2=400

 A<20�<20.

Để chứng minh A > 14, ta làm giảm mỗi phân số của A bằng cách dùng bất đẳng thức:

`n+1n�+1� > n+2n+1�+2�+1`.

Chứng minh tương tự ta có:  14<A14<�

Vậy 14<A<2014<�<20.

29 tháng 8 2020

Ta có: \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)

\(\Rightarrow A=B\)

Khi đó, \(\frac{A}{B}=1\)

25 tháng 12 2015

ta có: a= (1-2)+(3-4)+(5-6)+...+(199-200)

A= (-1)+(-1)+(-1)+...+(-1)

A= (-1) .( 200:2)

A= -1.100

A= -100

vaạy A=-100