CHO TAM GIÁC ABC CO CÁC GÓC A, B,C TI LE VỚI 7,5,3.CÁC GÓC NGOÀI TƯƠNG ỨNG TỈ LỆ VỚI CÁC SỐ NÀO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 góc A,B,C lần lượt là x,y,z
Theo bài ra ta có:
x/7=y/5=z/3 mà x+y+z=180 độ
=> x/7=y/5=z/3=x+y+z/7+5+3=180/15=12
x=12*7=84
y=12*5=60
z=13*3=39
Gọi góc ngoài tại 3 đỉnh A,B,C là a,b,c
Ta có a=y+z=96 , b=x+z=120 , c=y+x=144
=>ƯCLN(a,b,c)=24
=>a=96/24=4
b=120/24=5
c=144/25=6
Vậy các góc ngoài tam giác ABC tỉ lệ với 4,5,6
Gọi các góc ngoài tưng ứng của tam giác lần lượt là \(m;n;p\)
Tam giác ABC có : \(a+b+c=180^0\) Và \(\frac{a}{7}=\frac{b}{5}=\frac{c}{3}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{7}=\frac{b}{5}=\frac{c}{3}=\frac{a+b+c}{7+5+3}=\frac{180^0}{15}=12^0\)
\(\Rightarrow a=84^0;b=60^0;c=36^0\)
\(\Rightarrow m=180^0-84^0=96^0\)
\(\Rightarrow n=180^0-60^0=120^0\)
\(\Rightarrow p=180^0-36^0=144^0\)
Ta có ƯCLN(96;120;144) = 24
=> \(m;n;p\) tỉ lệ với (96 : 24); (120 : 24) ; (144 : 24)
=> \(m;n;p\) tỉ lệ với \(4;5;6\)
Gọi 3 A,B.C lần lượt là x,y,z
Theo đề bài ta có:
x/7=y/5=z/3
mà x+y+z=180 độ ( tổng 3 góc của 1 tam giác)
ADTC của dãy tỉ số bằng nhau,ta được:
x/7=y/5=z/3=x+y+z/7+5+3=180 độ /15=12 dộ
=>x/7=12 độ=>x=84 độ hay góc A =84 độ
=>y/5=12 độ=>y=60 độ hay góc B=60 độ
=>z/3=12 độ =>z=36 độ hay góc C=36 độ
Gọi 3 góc ngoại tại 3 đỉnh A,B,C lần lượt là a,b,c
ADTC góc ngoài của 1 tam giác,ta có:
a=y+z=60 độ+36 độ=96 độ
b=x+z=84 độ+36 độ=120 độ
c=x+y=84 độ+60 độ=144 độ
=>ƯCLN(a,b,c)=ƯCLN(96,120.144) =24
=>a tỉ lệ với 96/24=4
=>b tỉ lệ với 120/24=5
=>c tỉ lệ với 144/24=6
Gọi a,b,c là các góc A,B,C tỉ lệ lần lượt với 7;5;3
a/7=b/5=c/3 va a+b+c=180
Ap dung tinh chat day ti so bang nhau ta co :
a/7=b/5=c/3=a+b+c/7+5+3=180/15=12
Suy ra :a/7=12=>a=12.7=84
b/5=12=>b=12.5=60
c/3=12=>c=12.3=36
****
bạn này giải sai rồi ,các góc ngoài tỉ lệ lần lượt với 4;5;6