Tổng của các số tự nhiên nhỏ hơn 1000 chia hết cho 9 là:
A. 55 943
B. 54 944
C. 55 944
D. 55 844
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$55^{n+1}-55^2=55^2[55^{n-1}-1]=55^2(55-1)(55^{n-2}+55^{n-3}+...+55+1)$
$=54.55^2(55^{n-2}+55^{n-3}+...+55+1)\vdots 54$
Ta có đpcm.
\(55^{n+1}-55^n\)
\(=55^n.55-55^n\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Ta có: \(54⋮54\)
\(\Rightarrow55^n.54⋮54\)
\(\Rightarrow55^{n+1}-55^n⋮54\)
đpcm
\(\left(5n+2\right)^2-4\)
\(=\left(5n+2\right)^2+2^2\)
\(=\left(5n+2+2\right).\left(5n+2-2\right)\)
\(=\left(5n+4\right).\left(5n\right)\)
Vậy \(\left(5n+2\right)^2-4\)chia hết cho 5 với mọi số nguyên n
Bạn dùng phương pháp đặt nhân tử chung của lớp 8 nhé
\(55^n+1-55^n=55^n.55-55^n\) (vì \(55^n+1=55^n.55^1\))
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Vì xuất hiện trong tích có thừa số 54 nên chia hết cho 54.
Ta có :
\(55^{n+1}-55^n=55^n.55-55^n=55^n\left(55-1\right)=55^n.54⋮54\)
Vậy \(55^{n+1}-55^n⋮54\) với mọi \(n\inℕ\)
Chúc bạn học tốt ~
55n+1 – 55n =
= 55.55n – 55n
= (55 – 1) . 55n
= 54. 55n
Vậy : 55n+1 – 55n chia hết cho 54.
55n+1-55n
=55n.55-55n
=55n.(55-1)
=55n.54 chia hết cho 54(vì tích đó có 1 thừa số là 54)
Chúc bạn học giỏi nha!!!
K cho mik với nhé Võ Hồng Nhung
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n