K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

mong các thầy cô giúp em giải bài này với ạ

10 tháng 10 2019

Áp dụng BĐT Svác ta có:

\(\frac{a^2}{2b+c}+\frac{b^2}{2c+a}+\frac{c^2}{2a+b}\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 5 2021

Lời giải:

Áp dụng BĐT Cô-si cho các số dương:

\((a+b)^2+\frac{a+b}{2}=(a+b)[(a+b)+\frac{1}{2}]\)

\(=(a+b)[(a+\frac{1}{4})+(b+\frac{1}{4})]\geq 2\sqrt{ab}(\sqrt{a}+\sqrt{b})=2a\sqrt{b}+2b\sqrt{a}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=\frac{1}{4}$

NV
5 tháng 1

\(P=3log_{a^2b}a-\dfrac{3}{4}log_a2.log_2\left(\dfrac{a}{b}\right)\)

\(=\dfrac{3}{log_a\left(a^2b\right)}-\dfrac{3}{4.log_2a}.\left(log_2a-log_2b\right)\)

\(=\dfrac{3}{log_aa^2+log_ab}-\dfrac{3}{4.log_2a}.log_2a+\dfrac{3}{4}.\dfrac{log_2b}{log_2a}\)

\(=\dfrac{3}{2+3}-\dfrac{3}{4}+\dfrac{3}{4}.log_ab=\dfrac{3}{5}-\dfrac{3}{4}+\dfrac{9}{4}=\dfrac{21}{10}\)

4 tháng 5 2017

bunyakovsky:

\(\left(\sqrt{a+3}+\sqrt{2}.\sqrt{2b+6}\right)^2\le\left(1+2\right)\left(a+2b+9\right)< 3.12=36\)

\(\Rightarrow0< \sqrt{a+3}+2\sqrt{b+3}< 6\)