Cho hinh thang ABCD co day lon AB bang duong cheo AC, CD2=2BC2. Tinh goc BAD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hạ AE;BF vuong goc vs CD => ABFE la hinh vuong
Dat AE = AB = EF = x > 0 => CE = DF = (CD - EF)/2 = (10 - x)/2; DE = CD - CE = 10 - (10 - x)/2 = (10 + x)/2;
Tam giac ACD vuong tai A đường cao AE nên có hệ thức : AE2 = CE.DE
<=> x2 = (100 - x2)/4 <=> x2 = 20 <=> x = 2√5 hay AE = 2√5
ko bít đúng ko?
675758578579789
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a:Xét ΔABD có AB=AD
nên ΔABD cân tại A
=>\(\widehat{ABD}=\widehat{ADB}\)
mà \(\widehat{ABD}=\widehat{BDC}\)
nên \(\widehat{ADB}=\widehat{BDC}\)
mà \(\widehat{BCD}=\widehat{ADC}=\widehat{ADB}+\widehat{BDC}\)
nên \(\widehat{BCD}=2\cdot\widehat{BDC}\)
=>\(\widehat{BCD}=\dfrac{2}{3}\cdot90^0=60^0\)
=>\(\widehat{ADC}=60^0\)
=>\(\widehat{BAD}=\widehat{ABC}=120^0\)
b: Gọi M là trung điểm của CD
Xét ΔACD và ΔBDC có
AC=BD
CD chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{CAD}=\widehat{DBC}=90^0\)
Ta có: ΔDBC vuông tại B
mà BM là đường trung tuyến
nên BM=MC
=>ΔBMC cân tại M
mà \(\widehat{MCB}=60^0\)
nên ΔBMC đều
=>BC=MC
Ta có: ΔADC vuông tại A
mà AM là đường trung tuyến
nên MA=MD
=>ΔMAD cân tại M
mà \(\widehat{ADM}=60^0\)
nên ΔMAD đều
=>AD=DM
DM+MC=DC
nên DC=AD+BC=2AB(đpcm)